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The Application of Inverse Theory to Seamount Magnetism

ROBERT L. PARKER
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The traditional least squares method for modeling seamount magnetism is often unsatisfactory
because the models fail to reproduce the observaLions accurately. We describe an alternative
approach permitting a more complex internal structure, guaranteed to generate an external field in
close agreement with the observed anomaly. Potential field inverse problems like this one are fun-
damentally incapable of a unique solution, and some criterion is mandatory for picking a plausible
representative from the infinite-dimensional space of models all satisfying the data. Most of the
candidates are unacceptable geologically because they contain huge magnetic intensities or rapid
variations of magnetization on fine scales. To avoid such undesirable attributes, we construct the
simplest type of model: the one closest to a uniform solution as measured by the norm in a spe-
cially chosen Hilbert space of magnetization functions found by a procedure called seminorm
minimization. Because our solution is the most nearly uniform one we can say with certainty that
any other magnetization satisfying the data must be at least as complex as ours. The theory
accounts for the complicated shape of seamounts, representing the body by a covering of triangular
facets. We show that the special choice of Hilbert space allows the necessary volume integrals to bc
reduced to surface integrals over the seamount surface, and we present numerical techniques for
their evaluation. Exact agreement with the magnetic data cannot be expected because of the error
of approximating the shape and because the measured fields contain noise of crustal, ionospheric,
and magnetospheric origin. We examine the potential size of the various error terms and find that
those caused by approximation of the shape are generally much smaller than the rest. The mean
magnetization is a vector that can in principle be discovered from exact knowledge of the external
field of the seamount: this vector is of primary importance for paleomagnetic work. We study the
question of how large the uncertainty in the mean vector may be, based on actual noise, as
opposed to exact, data; the uncertainty can be limited only by further assumptions about the inter-
nal magnetization. We choose to bound the rms intensity. In an application to a young seamount
in the Louisville Ridge chain we find that remarkably little nonuniformity is required to obtain
excellent agreement with the observed anomaly while the uniform magnetization gives a poor fit.
The paleopole position of ordinary least squares solution lies over 30 away from the geographic
north, but the pole derived from our seminorm minimizing model is very near the north pole as it
should be. A calculation of the sensitivity of the mean magnetization vector to the location of the
magnetic observations shows that the data on the perimeter of the survey were given the greatest
weight and suggests that enlargement of the survey area might further improve the reliability of the
results.

CONItNIS seamounts have been valuable sources of information
Introduction ............... . ...... .......... 1 about marine geology. The existence of chains of
Theory I: finding a model ... 21 seamounts is the best evidence for deep hot spots station-
A ppro xim ations .......... ............................
Theory I: appraising the solution .............. 2 ary in the mantle [Morgan, 1971], and the regular iteral
Application to field data ................................. i spacing of these rows may indicate the presence of longi-
)iscussion ....................... tudinal convection cells [Richter and Parsons, 19751. The
Appendix A: linear independence o the representeir ....... 1 statistics of seamount distribution has been used to pro-
Appendix B: approximation of terrain h', tringultar I:iccl...... 1 vide information on the variability of tectonic activity
Appendix C: efficient exploration ofihc X. P plane ......... ;

throughout recent geologic past [Batiza, 19821. The
weight of the seamount is a load that deforms the ocean

1. INTRODUCTION crust, and analysis of the bathymetry of the seafloor
around a seamount yields estimates of the strength of the

Ever since C. Darwin deduced the general subsidence of oceanic lithosphere [McNutt and Menard, 1978] that con-
the seafloor from his observations of coral atolls, tributes to our understanding of the thermal evolution of

lithospheric plates [Wafts et al., 19801.
'Currently with Information Research Incorporated. Waltham, The first quantitative geophysical studies of seamounts

Massachussetts. concerned their magnetism. Vacquier [1962] developed a

Copyright 1987 by the American Geophysical Union. method for calculating an average magnetization vector
using observations of the magnetic field anomaly and the

Paper number 6R0757. bathymetric contour of the seamount. This method
8755-1209/87/006R-0757$15 0 approximated the seamount body with rectangular prisms
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and assumed that all the prisms were of uniform magneti- and Harrison [19711 observed that short-wavelength resi-

zation in order to calculate the average magnetization with duals centered over the seamount top could be an indica-
the minimum least squares error in the fit of the anomaly. tion of nonmagnetic rocks capping the seamount. They
Talwani [1965] modified the least squares method by modeled this by eliminating the uppermost bathymetric
represening the body as a collection of horizontal polygo- layers from the model and were able to increase the

4 nal laminas whose outlines followed the contours of the correspondence between the model predictions and the
body, and Plouff [19761 refined this method by increasing observations. Emilia and Massey [19741 confirmed this
the accuracy of the integration in the vertical direction. result by allowing their inversion program to vary the
The results from the least squares modeling program were magnetization amplitude of the model for each layer in the
used for paleomagnetic study of seamounts [Uyeda and seamount, although they found their method was unstable
R:ctards, 1966; Richards et al., 1907; Vacquier and Uyeda, if too many independent layers were used. Schimke and
1967], and as soon as the ideas of seafloor spreading Bufe 11968] obtained a magnetization for the cap of Chau-
became accepted, such analyses were applied to the unrav- tauqua Seamount by inverting the residual anomaly calcu-
eling of the history of the ocean basins [Francheteau et al., lated for the whole seamount. The sum of the cap and

1970; Harrison et al., 1975: Gordon and Cox, 1980; Sager, the whole seamount magnetization indicated that the cap
19831. Despite widespread use and some suggestive may be more weakly magnetized than the remainder of
findings, the results of this program have been rather the seamount body [Francheteau et al., 1968]. Blakely and
disappointing. The scatter of paleopoles derived from Christiansen [1978] used the pattern of magnetic residuals
apparently homogeneous groups of seamounts is often at the Mount Shasta Volcano to delineate lateral variations
large, and the portion of the magnetic anomaly accounted in internal magnetization. They observed that the western
for by the model is often small, portion of Mount Shasta may have greater magnetization

We believe the generally unsatisfactory performance is than its eastern portion and concluded that nonuniform
Iue in large measure to limitations of the least squares magnetization could lead to erroneous paleomagnetic poles
method of analysis of the magnetic data. The interior of using the least squares method. Likewise, Kodama and
the seamount is assumed to be uniformly magnetized Uveda [1979] used magnetic field inversion to deduced
down to its base, the plane of the surrounding seafloor, that the eastern portion of Oshima Volcano may have
and below this level the magnetization is the same as in lower magnetization than the rest of the body. To explain
the surrounding oceanic crust. In its barest form, the least this pattern, they presented geological evidence for an
squares model contains just three unknown parameters: older volcanic edifice hidden beneath the eastern part of
the three components of the magnetization vector. It is the volcano.
generally necessary to include as unknowns the parameters Other workers have attempted to account for seamount
of a local background field varying linearly across the sur- magnetic anomaly residuals by assuming that portions of
vey region to correct for small errors in the computation the seamount contain both normal and reversely magne-
of the anomaly from total field measurements this tized rocks. Sager et al. [1982] assumed the top kilometer
increases the number of unknowns to six. Linearity of the of Nagata Seamount was of reversed polarity, opposite in
relation bet~eern magnetization and ti. - bserved magnetic direction and equal in magnitude to the remainder of the
anomalies permits parameter estimation by a least squares body. Th y divided the body into normal and reversed
solution of the overdetermined equations connecting the sections by introducing a negative volume for the assumed
model to the data. The underlying idea is that any reversed portion of the body, resulting in an improved
discrepancy between the predictions of the model and the goodness of fit between the calculated and the observed
observed anomalies originates from uncorrected diurnal anomalies. Likewise, for a collection of seamounts on the
variations, crustal magnetic fields, and so on that may be Cocos plate, McVutt [19861 used a modified least squares
treated as random, independent noise sources. Under method allowing for solution of up to nine distinct regions
these circumstances the Gauss-Markov theorem justifies of magnetization. The number and the location of the
the application of the least squares formulation by its magnetically distinct regions were specified before inver-
assertion that the true uniform magnetization will be sion, and in two cases the seamounts appeared to have
recovered if enough data are used. Yet when the regions of both normal and reversed polarity. Naturally.
predicted field is subtracted from the observed one, the including more degrees of freedom in the models
residual never has the form of a random, uncorrelated improves the fit, but the significance of any conclusions
noise signal as it must if the conditions of the theorem are obtained is questionable in view of the arbitrariness
to be satisfied. There are systematic, large-scale residual involved in the subdivision procedure.
fields concentrated around the seamount that remain Another approach to removing the effect of nonuniform
unaccounted for by the uniform model. This may happen magnetization is to smooth the magnetic field anomaly
even when the seamount exhibits an anomaly of the sim- before attempting inversion for the magnetization. This
plest form, with just one maximum, or when it is situated approach has been used for complicated magnetic
on crust so young that no reversal can ijive occurred in anomalies where short-wavelength components may be
the history of the body. It has long been recognized that imposed on a longer-wavelength anomaly. The justifying
the pattern in the anomaly residual is indisputable evi- assumption for smoothing is that the volume of rocks
dence for a more complex internal magnetization. creating the short wavelength anomalies is small in com-

Several investigators have inferred variations in the parison to the volume creating the long-wavelength anom-
strength of internal magnetization using the pattern of aly Miles and Roberts 119811 used an orthogonal profile
magnetic field anomaly residuals. Richards et al. [1967] technique to smooth the magnetic anomaly of Rosemary



PARKER LE AL INVI RSE TIEORY AN) SIAMOUNT MANII ISM

Bank Seamount before inverting for the least squares field, consider f, an arbitrary continuously differentiable
magnetization. Sager 11984] used an upward continuation function, vanishing on 0 V, the boundary of the seamount.
algorithm to smooth the magnetic field anomaly of Abbott If a magnetization vector is defined by N1 = Vj, it is
Seamount. He argued that the advantage of upward con- easily shown by application of Gauss' theorem that the
tinuation is that it is physically equivalent to increasing the exterior field associated with M is identically zero. Thus if
height of the plane of the magnetic observations, and M0 generates a particular exterior field, M + M, will cause
therefore it gives a valid estimate of the magnetization .an identical one for every f of the specified form. There-
amplitude. Gardner et al. 11984] used the same procedure fore, on the basis of the magnetic field data alone, it is
to continue upward the magnetic anomaly of Shimada impossible to distinguish between an enormous variety of
Seamount by 4 km before attempting inversion with the different models. To overcome this basic ambiguity, some
least squares method. A set of field data is not associated restriction must be introduced from our knowledge of
with a unique upward continuation, and so numerical geology and geophysics to limit the amount of variability.
upward continuation involves its own (often unstated) This is just what the uniform magnetization assumption
assumptions about the true magnetic field. The does in a heavy-handed way.
differences between the various upward continued ver- Because the magnetic anomaly data are consistent with
sions of the data correspond exactly to the differences in magnetizations of infinite complexity, we must try to
the ascribed magnetizations of the various models: the avoid being misled into believing some accidental feature
inherent ambiguity cannot be avoided by this kind of of a model is truly demanded in the solution. Our
preprocessing. approach in this paper is to construct the magnetization

It is clear that the presence of mixed polarity in a model matching the data that is as close as possible to a
seamount may be a source of error in the calculation of its uniform model. The details of what we mean by "close-
paleomagnetic pole. To demonstrate this, Lumb et al. ness" and the techniques f r achieving the desired objec-
[1973] constructed the synthetic magnetic anomaly for a tive will be discussed in the next section. Having found
seamount model with mixed polarity and showed that an the model with the minimum amount of nonuniformity,
inaccurate estimate of the paleopole was obtained if a we know the true internal magnetization must possess that
homogeneous magnetization was assumed. They conse- degree of nonuniformity, or more. This is useful informa-
quently used mixed polarity magnetization to explain the tion because it tells us something about the complexity of
scatter of paleopoles obtained from inversion of the mag- the body.
netic anomalies of the Cook Islands. In contrast, Sager Nonuniform seamount magnetization may be produced
[1983] argued that seamounts of mixed polarity may yield by several factors: (1) the duration of seamount volcan-
accurate paleopoles if one polarity clearly dominates the ism, (2) the variety of seamount rock types with different
body and the effect of the other polarity is removed by magnetization characteristics, and (3) the structural com-
upward continuation. This is probably true for Abbott plexity of seamounts. The duration of seamount volcan-
Seamount [Sager, 1984] because of the agreement ism is not well known, but estimates range from as short
between its magnetic paleolatitude and the latitude of the as a few hundred thousand years [Duncan and McDougall,
Hawaiian hot spot. However, there is a significant 1976] to as long as 10 or 20 million years [Menard, 1964:
discrepancy between the paleopole calculated for Shimada McDougall and Schmincke, 1976]. These time spans are
Seamount [Gardner et al., 1984] and the pole position near long in comparison to the time for secular variation of the
the north pole implied by its young age. There are several geomagnetic field, implying that the magnetization of indi-
cases of disagreement between the magnetization inferred vidual seamount lava flows may be deflected by several
from least squares magnetic field inversion and the mag- degrees but that the average magnetization will represent
netization measured from rock samples. At Cobb an axial dipole field. The duration of seamount volcanism
Seamount, Merrill and Burns [19721 reported difficulty in is short in comparison to the frequency of geomagnetic
reconciling the paleopole obtained from magnetic field field reversals during the Cretaceous [Kent and Gradstein,
inversion and that measured from summit rock samples. 1985] but is long in compaison to the frequency of rever-
Similarly, the magnetic field inversion for Suiko Seamount sals during the last 5 million years [Lokvrie and Kent,
[Kodama et il., 19781 yields a paleolatitude significantly 19831. The probability of spanning a field reversal during
different from that measured for rocks obtained from construction is therefore higher for Tertiary seamounts
Suiko during Deep Sea Drilling Project leg 55 [Ko,. than for Cretaceous seamounts, and this allows Cretaceous
19771 Similarly, the magnetic field inversion for the seamounts to be more easily modeled. Seamounts with
Oshima Volcano [Kodatna and Uleda, 19791 provides a episodic or post erosional volcanism may be constructed of
magnetization direction that differs from paleomagnetic rocks with imprints from geomagnetic fields of different
measurements taken on surface volcanic rocks. periods and locations. For example, Rice et al. [19801

[hese inconsistencies point to the need for a more gen- reported that as much as 32% of Bermuda is madc of
eral magnetization model. The fundamental difficulty fac- mid-Tertiary sills that were intruded into a Cretaceous
ing anyone who wishes to introduce a more complex struc- edifice. Additionally. for the southern Line Islands it was
ture is the nonuniqueness of the inverse problem. Even reported that both Eocene and Late Cretaceous volcanism
when a magnetic field caused by internal magnetization is are present within the seamount edifices [Itaggerty et al.,
known exactly at every point outside the seamount. there 19821. Seamount nonuniform magnetization may also
are infinitely many other magneti/ations generating pre- result from the variety of rock types involved in their con-
cisely the same exterior field. To get some idea of ho% struction. Sean'-unt rocks such as hyaloclastites, pillow
large a family of models is compatible with every exterior lavas, dikes, ano gabbros may differ significantly in their
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magnetic properties. Hyaloclastites are relatively nonmag- estimated uncertainties remain disappointingly large. The

netic rocks composed of ash, sand, and broken pillow focus of our current theoretical research is the refinement
rinds associated with explosive underwater volcanism of the bounds on the uncertainty.

[McBirney, 1971, Lonsdale and Batiza, 1980]. Harrison The plan of this paper is as follows. Section 2 gives the

[1971] proposed that the weakly magnetized top of a mathematical details concerning the construction of a most
seamount may be composed of hyaloclastites. Likewise, nearly uniform magnetization. For this problem we have

Harrison and Ball [1975] observed low magnetization at an chosen a Hilbert space setting in which the norm of the
exposed seamount composed predominantly of hyaloclas- space is proportional to the rms magnetization. In this
tite tuff. Higher magnetization will be present in space the distance between two models is the norm of
seamount basalts, such as pillow lavas, and dikes as well their difference. We decompose an arbitrary magnetiza-
as in seamount gabbros. It is not known what fractions of tion into two parts: a uniform magnetization (a vector of
the seamount bodies are composed of hyaloclastites rela- constant size and magnitude at every interior point of the
tive to basalts or gabbros. However, it has been put for- seamount) and another, nonuniform part that may vary in
ward that large amounts of these materials may be found magnitude and direction. The model we seek is the one
on the flanks [Lonsdale and Batiza, 1980] and summits that has the smallest nonuniform component and satisfies
[Batiza et al., 1984] of seamounts. Structural complexity the measurements of the magnetic field anomaly. The
may be another factor leading to nonuniform seamount norm of the nonuniform portion is a seminorm of the
magnetization. Seamounts may contain large magma magnetization in the language of functional analysis, and
chambers or conduits, and these bodies may require a few so we call the modeling process seminorm minimization in
hundred thousand years to cool because of the low ther- contrast with many geophysical inversion techniques which
mal conductivity typical of basalt [Grossling, 1970]. Such a are model norm minimizations. Although it is always pos-
body may partially cool in a polarity interval opposite to sible in principle to obtain exact agreement between the
the rest of the seamount or may record magnetization predictions of the model and the measurements, we
changes due to geomagnetic secular variation or grain size should allow for misfit because of noise in the measure-
variation. It has been proposed that tilting of the flanks of ments and approximations in the theory. Section 3 of the
seamounts may occur as a result of inflation of magma paper deals with the various approximations necessitated
chambers [Staudigel and Schmincke, 19841 resulting in by practical calculation and measurement. The shape of
changes in magnetization inclination. Likewise, dike and the seamount cannot be represented exactly in any actual
rift zones may have distinct magnetic signatures, and they computation, so we have chosen an approximation for it
are particularly prominent features on large seamounts and in terms of an enclosing set of triangular facets on a flat
guyots. base. We estimate the magnitude of the errors introduced

The existence of a large family of alternative models by this approximation and show how they may be kept
each capable of exactly matching the magnetic anomaly well below the uncertainties associated with the magnetic
certainly means that it is impossible to obtain an exact observations. To carry out the theory of section 2, a large
description of the interior magnetization from these data. number of volume integrals must be carried out over the
Furthermore, the data will usually not allow us to decide seamount. Even with our simplified body those integrals
unambiguously between competing geological speculations. cannot be performed in closed form, and therefore we
Therefore it is important to identify any features of a adopt a scheme for numerical approximation. Here one of
model that can in principle be strictly related to the mag- the advantages of our particular Hilbert space formulation
netic anomaly. The dipole moment of the seamount can becomes evident: the volume integrals can be transformed
be computed from its exterior field if this is exactly into surface integrals by means of Gauss' theorem.
known. The dipole moment is especially useful geophysi- Despite this the numerical work in obtaining the necessary
cally because, after division by the volume of the accuracy is great- we describe efficient numerical processes
seamount, it is the vector of average magnetization. This for computing the surface integrals. Section 4 treats the
is the vector most diagnostic of the mean geomagnetic question of estimating the uncertainty in the uniform part
field direction during the formation of the seamount, and of the magnetization model. We show how a knowledge
so it is a most important quantity for paleomagnetic of the maximum permissible intensity of magnetization
research. As it happens, when we compute the most can be convertee into a bound on the uncertainty in the
nearly uniform magnetization, the mean magnetization is average magnetization. In section 5 the theory is applied
automatically separated from the nonuniform remainder: to a seamount in the South Pacific Ocean on the Louisville
it is then easy to find the paleomagnetic pole associated Ridge seamount chain. Ordinary least squares modeling
with the most uniform seamount. The adLual dipole of this seamount is unsatisfactory in two ways. First, the
moment and our estimate will differ because the magnetic predicted anomaly has the wrong shape and magnitude,
data are incomplete and imprecise. A key question is, resulting in an rms misfit of 269 nT to an anomaly with
How far can the true mean magnetization differ from the rms magnitude of less than 600 nT. Second, the calcu-
vector associated with our model? We develop a theory to lated paleomagnelic pole position is more than 30' from
provide the answer. We require an upper limit on the the north geographic pole, a displacement most improb-
intensity of magnetization of the rocks of the seamount. able for a young seamount, as this one is by the evidence
otherwise, the actual difference between the actual mean of radiometric dating and its position in the Louisville
magnetization and the uniform vector may be arbitrarily chain Application of our method overcomes both
large. Preliminary calculations with the theory indicate deficiencies: from magnetic field measurements on the
that more work needs to be done on this topic because the approach to the seamount we estimate that the local
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crustal fields contribute about 30 nT to an anomaly with a G (r, s) = -.,, V, -
peak magnitude of over 1200 nT; we find the most nearly r Ir-s
uniform model with this rms misfit. Its pole position is A -A( s
within 7' of the geographic north pole. The uncertainty () s) 0  r - s)
ascribed to the pole position by the error theory appears to 47r Ir - s 15 Ir--sJ
be much too large, and reasons for this discrepancy are
put forward. This function gives the field component at r in the direc-

Most readers will not require a deep understanding of tion of A,) owing to an elementary dipole at s. Let us

the mathematical derivations or of the numerical tech- recognize explicitly in the notation the important fact that

niques that lie behind a successful application of the measurements are obtained at only a finite number of

theory. To them we suggest the following strategy: first, places ri, r 2 ..., r,. We simplify (1) as follows:

go quickly through the next section to get an idea of the d, =f G (s) M(s) d's j = 1, 2, N (3)
theoretical framework, then skip to section 5 where an
actual magnetic survey is analyzed with the method. In
the application we have included signposts to the earlier Here G, (s) stands for G (r., ,s), and d, is an abbreviation
material in the event that the reader wishes to follow up for the jth datum, AIB(r,)I. Equations (2) and (3) con-
any particular point in greater detail. stitute a complete formal solution to the forward problem:

a practical solution requires in addition efficient numerical
procedures for the evaluation of the volume integrals over

2. TIIEORY 1: FINDING A MODEL the complicated shape of the seamount. This question is

This section explains how to find the most nearly uni- deferred until section 3, because we shall need to evaluate

form magnetization within a seamount consistent with other more involved functions over the same domain to

magnetic field data measured in its vicinity. The funda- solve the inverse problem.

mental geological assumptions are that the seamount was At this point we introduce the notion of distance

formed by the outpouring of lavas onto a previously exist- between two models of magnetization, so that there is a

ing. relatively level crust and that the new material did not definite meaning to the idea that some models are closer

cause the older crust below to become strongly remagnet- together than others. A natural mathematical setting for

ized. Our model seamount does not have large magnetic this discussion is a normed linear vector space X contain-

roots" instead, the significant magnetic sources lie above ing as elements all the magnetization functions that might

the level of the surrounding seafloor. Naturally, the mag- occur inside V any magnetization M is a single element in

netic material around the seamount and under it must ' The distance between any two elements M and N of'

contribute to the measured fields at the sea surface. is the norm of their difference IIM - Nil. Equation (3) is

These signals are noise as far as we are concerned, and we interpreted as saying that each observation is given by a

allow for them by permitting mismatch between the pred- linear functional of M. There are several normed vector

ictions of the model and the observations, spaces that might be suitable in this context. In the study
of marine magnetic anomalies, it is traditional to reduce

The first task is to solve the forward problem, that is. the vector-valued magnetization to a scalar function ofthe calculation of the predicted magnetic fields from a position times a constant unit vector, in other words, to
known model of magneti.'ition. Almost all marine mag- consider only magnetizations with constant direction. One
netic measurements are of the total field intensity IB I, might at first suppose that the restriction to unidirectional
which we shall assume have been reduced to total field magnetization models might make it impossible to fit the
anomalies by subtraction of a local, total field computed data properly, particularly if the "wrong" direction were
from a global field model. As we have already noted in chosen. but it can be proved that such models are capable
the introduction, it may be necessary to include in our of satisfying any finite data set, no matter what direction is
model parameters describing the variation of the global used. The proof follows from the linear independence of
field over the survey area. Because the contribution of the the Te prestromthineaisedebyethe
seamount to the total observed field is small, the resultant methods used in appendix A. Nonetheless. we beliee it

anomaly is well approximated by is important not to make restrictive assumptions about the

AIB = AB magnetization of the seamount, and so we employ a space

that allows .omplele freedom for the magnetization func-

where A,, is a unit vector in the direction of the ambient tions that are its elements.

field at the site, and AB is the field vector associated with Parker [19711 proposed the use in this problem of a Ilil-

local sources. Suppose for the moment that the entire bert space, which we shall call P. here elements are
anomaly is caused by the magnetization of the seamouni: vector-valued functions of' position s V. for example,
then the anomaly found at r, the position of' an observer, magnetizations Technically, an element of P is a certainis just equivalence class of functions brought into being by the

completion of the space, we shall not dwell on these
A B(r I = J (r. s) % i(s ) d It) matters here The inner product of the space is

where M(s) is the magnetization ector at a point s I (NI. N I F NI Is ) N Is) d (4)
in the body and G (r, is irce!n's function lor the prob-
lem. namel. The norm of an element is
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IMII = (M, M) (G,. T) = 0 for all j; hence we can choose the part of R
lying in G1 at will. Equation (9) shows us that we should

= IM (s)12 ds make T the zero element of P, for this gives us the smal-V I lest norm of all. Now we must adjust S to obtain agree-ment with the data. Because the elements 6, form a basis
If IMil is normalized by the square root of the volume of for G,

the seamount, it is just the rms magnetization. There are

a number of reasons why a Hilbert space is a convenient
choice for the linear vector space the principal one is that S ,

--=I

optimization problems (minimization of a norm, for
example) are particularly simple in such spaces because We have concluded that T = 0, and we know from (8)
they have unique solutions, linearly related to the data in that R = S from (6), M = U + S, and so the magnetiza-
many cases. tion nearest U satisfying the data is

Let us first assume that the data dl, d ...... d are to be %
satisfied exactly and that the required uniform magnetiza- M, = U + G, (10)
tion is already known: we call it U E P. Notice that U is ,1
not simply a vector in ordinary space: it is a vector-valued The decomposition theorem has reduced the problem of
function throughout the region ' that is constant in mag- finding an optimum element from a search in an infinite-
nitude and direction at every pont. Equation (4) suggests dimensional space to a problem in a finite number of
that we can write (3) as an inner product: unknowns. All that remains to be done is to find the

expansion coefficients (,,, and the model nearest U has( ) 1, 2 _, N (5) been found. This is accomplished by substituting (10)

This is possible because for observations outside I . every into (5): we obtain the system of linear equations
( has a bounded norm and is therefore a valid element
of P. Such elements are called representers in the , I,t , = d k = 1, 2 . V
mathematical literature, a name preferred by the authors I

to the geophysical term "data kernels." Stated in the con- where
text of the Hilbert space P, our problem can be posed as
follows: we must find M satisfying (5) such that IIM - UII dU= ( t
is as small as possible. This corresponds to making our
model as close to a particular uniform model as it can be, and
in the sense of the norm of P. To solve the problem, I,, (G, G,G (I1)
write the nonuniform part of the magnetization as R:

The matrix I' of all possible pairs of inner products of the
R = M U (6) representers is fundamental in much of the theory: it is

and take the inner product with G,: from (5) we have called the Gram matrix. The representers are linearly
independent, from which it follows that the Gram matrix

d, - (G,. U) = ( R) j 1, 2 ..... (7) is nonsingular [Luenberger, 19691, and so there is a unique

Since everything on the left is known, the problem is to solution to the linear system for the t,.
find the element R of smallest norm obeying a given finite In reality we do not know the direction nor the intensity
collection of inner product constraints. The solution to of the uniform magnetization that best approximates the
this kind of optimization problem has appeared in the geo- interior magnetization: determination of U is one of the
physical literature many times [e.g., /kus, 1970. Parker. most important goals of our investigation. Also we must
19771. For completeness we sketch the derivation here. not demand precise agreement between the predictions of
We show in Appendix A that the representers G,, where the theory and the observations. The complete solution to
l = 1, 2.._. N. are linearly independent: therefore they the problem will be developed in two stages: first we admit
form the basis for an N-dimensional, and therefore U to be unknown: then we allow misfit.
closed, subspace of P, which we call G. The decomposi- To determine the unknown U, imagine making a guess
tion theorem for Hilbert spaces [Luenhcrger, 19691 states for that elemen,, solving (7) for the smallest R. and then
that any element of P may be written as a sum of two repeating the process for a series of different guesses.
parts, one lying in G and the other in G'. with the sub- Clearly the best solution of the series would be the one
space of elements orthogonal to the elements of G called that causes R to be smallest, for then it would be the
the orthogonal complement of G. We decompose R in nearest one to some uniform model in the set of guess
this way: models. To iolve the general problem, we analyze this

hypothetical optimization problem over the space of allR = S + T (8) possible elements U. In fact U belongs to a three-
where S E 6 and T E G: obviously. (S, T) = 0, and dimensional subspace of P. because any such element can

then it follows that be written

1iRI 2 
= IISu 2 + ITI12  (9) U = iXt + 0 2X: + X,

When (8) is substituted into (7) we see that only the S where X1, X,, and X, are fixed elements of P representing
component of R affects the fit to the data, because uniform magnetizations of unit intensity in three mutually
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perpendicular directions. From (10) the most nearly uni- ponents each of Ashich yields an equally small 1IRIi. Natur-
form solution takes the form ally, such highly symmetric situations will never arise in

3 N practice, although the reader may have guessed that we
M /,,X, + JG, (12) stumbled on such a case in tests with artificial models.

After (15) is solved the vectors t and /3 are put into
We now consider both the a and/3 coefficients to be free the expansion (equation (12)), and the desired most-
in constructing a model that fits the data: uniform model results. We call the most nearly uniform

solution M. and the associated uniform and nonuniform
(G [" /3,,X,, + asG]) = d, (13) pieces U. and R.. From the perspective of functional

analysis, the quantity we are minimizing is the norm of
But in addition we want to minimize the distance squared the projection of the magnetization onto the orthogonal
butwin adn we wcomplement of the three-dimensional subspace of uniform
between U andM: magnetizations. Thus we are performing a regularization

of the problem in which 11R.11 is a seminorm of M (Luen-
IIM - U112 

=( aVG,, 1 [ aG, 1) (14) herger, 1969]. A seminorm is a functional possessing all
the properties of an ordinary norm save one: IR.11 can

These expressions are more easily grasped if we take all vanish when M is not the zero element of P. The optimi-
the sums outside the inner products and introduce matrix zation problem we have solved is called seminorm minimi-
notation: zation. One nice general property is that the part of the

A /3 + F a d (13') solution lying in the subspace penalized by the norm (the
nonuniform magnetization) is orthogonal to the other part

11M - U11 2 = _ I' a (14') of the seminorm minimizing solution (the uniform part).

Here F is the Gram matrix and the meaning of the vectors Any portion of the solution lying in the subspace spanned

aE RN , / E R 3 and d E IR is obvious- the components by the X, is drawn from U., and therefore it is not found
in R. where it would only increase the seminorm unneces-

of the N by 3 matrix .4 are given by sarily.

Aj, = (G,. X,,) A final refinement to the theory allows for some

The matrix A contains the solution to the formard prob- disagreement between the predictions of our model and

lem for uniform seamounts because its elements are the the observations. We determine the model nearest to a

magnetic fields at the observation positions due to unit uniform magnetization but fitting the data to a precision

uniform magnetizations in the three orthogonal axis direc- dictated by the amplitude of the noise in the observations.
tions we call .4 the Green matrix. Only this m is For computational convenience we turn to the Euclideanmarx distance or two-norm as a measure of the misfit between
needed in the conventional least squares fitting process. de prtions s tea. the misfiearsn

model predictions and the data. The rms field arising
The simplest way to minimize (14') with (13') as a con- from crustal sources not in the seamount and other

straint is to introduce a set of N Lagrange multipliers A.
, ..... X.. which we can collapse into the vector X E IR extraneous signals can be estimated by examining mag-

and minimize the unconstrained functional nettc data obtained in the survey region but far enough
away from the seamount for its influence to be negligible.

Q ' F + XI [A /3 + I a -d] Another source of uncertainty arises from the approxima-
tion of the seamount's shape- we shall treat this factor inover the vectors a, /3, and A. The solution requires only detail in the next section.

elementary calculus: we eliminate A and then solve a The discrepancy between observation and model predic-
linear system of equations for the coefficients, most neatly tion should be no more than the magnitude of the overall
written: estimated uncertainty. Therefore (5) is replaced by

,4I ) [d, - (G, , M)12 < S2  (16)

where 0 is an 3 by 3 matrix of zeros and 0 is a 3-vector where SIN" is the estimated rms noise. This condition
of zeros. The necessary and sufficient condition that (15) insures that the seamount we find will be the most uni-
has a unique solution is that the projections of the ele- form of all those in satisfactory accord with the magnetic
ments X into the subspace G spanned by the field observations.
representers should be linearly independent or The arguments given earlier using the Decomposition
equivalently that Theorem apply equally well here: M must take the form

(6 /3,X,, = , = 1, 2 N given in (12) so that the optimization problem is reduced
to finding the vectors o and /3. In terms of these (16)
becomes

only if all 13, are zero. Unfortunately this is not true in

general. for example, if all the observations lie in the same NA /3 + V 1 - d 2 < S ?  (17)
plane as A, and the plane is a plane of symmetry of the
seamount, then thc cnndition does riot hold. In such a This censtraint appears difficult because it is an inequality.
geometry, the data contin insufficient information to but it is not hard to show that equality applies for any nor-
decide between members of a subspace of uniform coin- nial data set. The John multiplier theorem Isee Smith,
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1974, chap. 31 provides the technique for minimizing a dF .- 4(Ho)l [IF2 + Y'+ A (HA) A' Ptto)

functional subject to inequality constraints. The idea is d
almost identical to the more familiar method of Lagrange here the matrix H is defined by
multipliers: the inequality constraints are appended to the w
functional under variation. The multiplicative factors H = (1/i+ )
behave as they do with equality constraints, but the sign
of the multipliers is fixed, and for each one there is an The positive definiteness of " insures t.he same property
additional "complementary slackness condition." In this for the factor in brackets when > 0, from which it folparicuarprolemthre s ustonemutipier/. >/0,and lows that dF/dMa is always negative. Thus the solution to
particular problem there is just one multiplier, pt > 0. (22) is unique if it exists. It may be verified that as

e - -, /FQ) - 0, which is consistent with the idea that
ar r a + Ai1lA /3 + F" a - d11 2  (18) this limit corresponds to the problem of finding a magneti-

over all vectors a and 13 such that zation fitting the data exactly. The maximum F occurs as
- 0, corresponding to a = 0 and the problem of least

S(11,A f3 + I' a - d112 - S2] = 0 (19) squares fitting a uniform model. The value of p. associ-
ated with a particular S2 < F(0) can be found by iteration

In r t complementary slackness condition (equation (19)). with Newton's method, which always converges if the
either the factor in brackets vanishes and then equality starting approximation is less than the true value of t-;
applies in (17). or - is zero. If p. vanishes it is clear that_. this follows from d2F/dA-t: > 0, a result requiring heavy
(18) has its only minimum at a = 0, since F" is positive thisbfollo om practice 0ar ing eavy

defiite Ths crrepons t an xacly nifrm agnti-algebra to obtain. In practice, having found a value ofApdefinite. This corresponds to an exactly uniform magneti- that yields plausible misfits to the data, we usually sweep
zation. The motivation for our theory is the Fact that a through a range of values in its vicinity to examine the
totally uniform body cannot fit the magnetic data to the different solutions.
necessary precision, and so normally u is nonzero. We With inexact fitting there is an interpretation of the
conclude, therefore, that equality is achieved in (17) so coefficients a that has no counterpart in the analysis of
that (19) may be obeyed. The conditions of the John precise data: the equations obtained upon variation of the
multiplier theoicrn apply at any local minimum of the functional with a can be expressed as
functional, but because the norm is a convex functional,
and the constraint (17) constitutes a convex set of points, a [4 - (A /3 + IFa)]
an, local minimum must also be the global minimizer of
the functional by a well-known property of convexity or

(Luenberger, 1969]. a,= A [d - (G,, M)I
It may be helpful to interpret the minimization of (18)

as an intermediate problem lying between two extremes: Since the term in brackets is the discrepancy between the
the conventional least squares fitting by a uniform body predictions of the model and the observations, this equa-
when 1A tends to zero and the construction of an exactly tion says that the individual misfits to the data are each
fitting model when A becomes large. In the latter limit. proportional to an expansion coefficient of R in the basis

the solution is the one that possesses the smallest nonuni- of representers.
form component: it has no particular relation to the sinai- The last matter to be dealt with in this section is the
lest norm model. inclusion of the corrections to the ambient field to allow

To find the minimum, we differentiate (18) with respect for inaccuracies of the main field model. We can do no
toa. 0. and y in the usual way; after some rearrangement better than the traditional treatment and allow three

the equations derived from variation of a and /3 can be further unknown parameters that correct for the presence
written of a linear variation of the ambient field over the survey

i i'1Ix region. In place of (5) the theoretical prediction from the
1A + A a= d (20) model takes the form

d 1 1(, = y.+ r, + (G,.M) j = 1,2...,

which is a linear system if It is fixed. In contrast to the
situation with precisely matching data, we find that the where y is a horizontal vector (the gradient of the
multiplier It cannot easily be eliminated. To find a we ambient correction) and yo is the unknown offset of the
must appeal to (17) taking the equality; a little algebra ambient field from the main field model. Formally this is
simplifies the condition to just an inner product on another Hilbert space P whose

elements consist of ordered triples [p,q: F] where p is a
a.S2 , S (20) real number, q is a horizontal vector, and F is an element

In outline the solution of the problem proceeds in this in P. Then the associated inner product for F', G' E P' is
way: the vector a may be regarded as a known function of (F', (')'= ((p; q, F], [s: t GI)'
p. through the solution of (20) (assuming the symmetry of
the problem allows a unique solution): then (21) is a non- =ps + q t + (F, G)
linear equation for p which we may write The development proceeds in exactly the same wa in the

Fij =S2 (22) new space whien the representers for the anomaly data are
chosen to be

After some manipulation we can find an explicit expres-
sion for the derivative of F G,' = [I r •,!
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and the origin of coordinates is in the sea surface, so that 90 - -.
r,, the position vector of the jth observation point, is hor- 80
izontal. In P the completely uniform seamount is one ofthe form [p, q, gX I + 132X, + fl3X3 ];, then all the equa- 1o 0

tions derived earlier apply without change. Now the ,6
coefficient vector in the matrix equations /1 lies in R'
while a is unchanged in dimension and meaning. 50

40,

3. APPROXIMATIONS

In this section we explain the nature of the approxima-
201tions and show that the errors introduced by them can be I •

kept to acceptably low levels in comparison to other 10,
sources of uncertainty in the data. The first question we
address is the calculation of the Gram matrix elements. o 20 40 f0 80
The definition of the representers from (2), together with I',rii ,nqle 0.

the inner product of P from (4) and the Gram matrix Fig, 2 Shapc tacir i-)[i I ol equation t24) or triangles two of
from (11). gives an explicit expression for an element of A hose ,erte\ angles ,re N and (4, in degrec,. All ruissible ran-
I'" gles are coered b% this ditairani

F -4 77 V I Sij water. Our approach has been to represent the surface of

1 the seamount by a tessellation of triangular facets: the
V . 1 s I d..s (23) facets are the plane interpolations of sample points drawn

from the bathymetric data. As suggested by Figure 1,

Here V means V_ differentiation with respect to s. we there are many was s in which a given arbitrar% collection
have used the fact that of points in the plane may he connected together to forn

nonoverlapping triangles. md each of these yields a
[ _V -1- different interpolation. In appendix B we show that the

Ir. -s I r -sl rms error of the interpolation can he deduced front the
After we have taken adsantage of the symmetr. ot F power spectrum of the topogralh.. For young seafloor.
there are V (N + 1)/2 integrals like this to be evaluated; a Fox and lwi's [19851 find tht a power law is a good
similar set of 3N integrals is required to find the elements description of tie spectrun omer a large range of wAs c

of the Green matrix .4 . Because A is ivpicallt 0 or numbers, and as piroed in the appendIx, this leads, to the
more, many thousands of integrals must be carried out following expression for the rmns intcrpollimon error a ei-
Severil approximations are required in order to calculate aged over a tiangular facet I.
these numbers. , ' , = , '( .'A-)( 7' (24)

The region I' in (23) is the set of points defining the
seamount. We cannot know the e\,cit shape if he bot- where A is the area of I ,-)(I is I factor depending on
toni boundary of 1, where the newer las\as of the ,ohcanic the triangle's "hipc, and r1. 1 arnd / ire ,instains.
body lie in contact with the original crust. We appro\i- %.alues, computed frot the iinal * ,

is of [o\ and I la eN are
nmate this surface b\ a horitontal plane at the mean lesel rl = 2 48 and , = 15 5 n whel /,,. wA hich is N irb trttrstT
of the surrounding terrain. The upper surface o the length scale. i, set t I km. The shape lactoi-II I. gi en
seamount is known in considerable detail, but it too must b. equallon tBll, is contoured in [ igurC 2 [r ,a li\cd
be approximated in our calculations because it is so clni- area, the equilateral triingle produces the least error .ith
plex. It is important that the approximation can be = 0 320. but al tringle whose angles ill ex.eed 20
formed from samples of the hathymetr% not disposed In ts associited with an error only slightl\ larger, for then
any regular manner because we shall show that the com- ) 575 Table I gies the ris error for cquilateral tni-
putationaty optimal spacing of bathymctr. samples angles of sarious si/es. Although serious errors will not
depends directl% on the water depth: topography in shalow" be incurred unless a triangle i,, seerel, elongated, the
water should he sampled more densely than that in deep analysis indicates that the cells of the tessellation should

he chosen to be as nearly equilateral as possible -\n

(b) A auimatic procedure for doing this wxas gisen b\ II, nn
119821. the method 's based upon a theorem of1 (-I
l)elauna\ stating that a triangular tessellation Iia\ be

S-4 + .,, arranged so that the circumcircle of eser. triangle cotitm s
4 ~ - , ,no sertes of any other triangle of the set A slighlh

mioditied s ersion of Watson's program has proved to be
highly satisfactory it is efficient, is reliable, and yields sen-

t JI . o'Ileii i of sl 0 ts11, 1idke~l t ri ranoni inl the sihle tessellations, for example, the one in Figure lb
tL-r:r (i \ riiuigu.ir ics.,cliin i f )ht~I hi'.,Ct u ' (fal,t.I The error in interpolation of the topograiphsN discutssCd
I1 i'L , )riIh In f r i h" lsi ni co ct I irtllldhi'rtl t orllfigiti 11oll ., aho\e is, secondar, to the consequent error introduced in

d J, c t r 11 +c-, 11 , t , ,I I; ,I, srnI the comIllputed Iagnetic anomaly b\ the appro\l t, iton )I
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TABLE I. Rms Error or Interpla tion h. Equilateral Triangles k for I -l. From this equation we can estimate the error
Side, m '52 ___ introduced by giving the seamount a flat base. In this case

the effective area of the triangles is very large; thus we
50 070 may replace S, [k ] by the original isotropic spectrum of the

200 20 bottom topography, S[kI, and choose z( to be the local

300 2.6 mean depth of the ocean in the absence of the seamount.
i00 3.9 In appendix B we give an expression for S[k] derived

1000 64 from the data of Fox and Hayes [1985], using the power
1500 87 law model:
2000 107
2500 12.6 S[k] = c'I (kl tI
3000 14.4Root-0ean r rr iwhere c, = 27,400 m4 for young volcanic terrain and 7)Root -rean -square error in topography after interpo~lation

by an equilateral triangle ith the gien side length. The and 1F, are as before. Substituting into (26) we find

values are calculated f'romn equation 124) and the constants ot
Fr\ and Ha es (19851 (B- A 27&T M3 kY 'EdO , (3-77)I F (27)

the true surface of the seamount by an artificially smooth rI,, 0 ;1
one. This factor will be treated as a noise term, that is, a 1211-I nT2

part of the measured field not fitted by the model. We
have no control over the contribution from approximation for (MI = 10 A m . a reasonable figure for young oceanic
of the base of the seamount by a level plane, but we shall basalts [Vacquier. 1971]. Thus we estimate the rms error
show that this error is not large in comparison with effects from neglecting the roughness of the base of the
of diurnal variations and residual crustal fields. The seamount ranges from about 9 nT in shallow water, say
approximation of the upper surface can be made as accu- 1500 m. to about 5 nT in water 4 km deep.
rate as we desire by choosing the triangle size sufficiently The major difficulty in using (26) for the upper surface
small. It would be wasteful of computing resources, how- of the seamount is in calculating the proper spectral den-
ever, to reduce ;his error far below those from other sity S[k]. We simplify the interpolation process by
sources. approximating it as a low-pass filter that never magnifies

The magnetic effect of the lower surface will be the original topographic signal and whose gain falls with
modeled by a thin horizontal layer located at the level of increasing k. Thus we treat the residual 6 as a high-
the surrounding crust with variable thickness 8. the passed version of the topography. From the analysis of
difference between the true topography and that of the appendix B we have one other property of the filter: the
model. The same kind of model is used for the upper total variance of the residual topography, 62 7 gives us
boundary, but we choose the level to be that of the shal- the power gain. Of all the filters obeying these constraints
lowest part of the seamount. this safely overestimates the we find the one acting on S (k 1 that gives the largest possi-
noise signal. We simplify the magnetization in the layer ble variance in AB. Thus even though we may not know
by using a constant vector M. The expected squared mag- the exact form of S.[k ] we can still set an upper limit on
netic signal is found by integrating the power spectrum of the interpolation error. It can be shown by the application
the magnetic field at the sea surface- of the principles of linear programming [see Luenberger,

A = E[(A,, •B n2  19691 that the optimal filter is a pure high-pass filter that
rejects all energy below some critical wave number and

= J 5 -l,'(k*I lk.' d'A' 125) passes a signal above that with constant gain. Using this
IR- result and the expression for the power spectrum of the

where .5, is the power spectral density of the layer thick- field, we can maximize the variance with respect to the

ness and where L(A) is the (approximatel linear) to free parameters of the filter: its gain and the cutoff

transfer function between topography and surface mag- wave number. After some lengthy algebra we obtain the

netic field gisen b> Parker [19731. results about to be summarized. Define a dimensionless
quantity (r by

L l k' = -,rj ,e 1'04 . lk - iA')M . ,,A ji - iA'),' -- ) 8 / 10/ )

where is the depth to the thin layer and is ia ertical i, 27r L1i
unit sector, here we have taken only the the first term of
Parker's series and converted to the Fourier transform The largest possible mean square magnetic field error due
ciinentions set out in appendix B The complex wave to neglect of the surface roughness is estimated to be
number term,, in 'IA ) achieve their largest magnitudes I 4 "
%,hen A, and M are vertical. thus 125) gives the following .B H r, ,l l 2 l I IQ(- I -j HQ --

hound 16:3

.B < rB: e,' 'c I :,(A I 2-, A ( (26) B . 16 p I',- I Ql47r i _

\P here it h,is been issumed thit the SpQLtUrn h isiitrill

ifois. depends wfl\ upon Ai, I tild "c hise ',ssttd
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0o s E I . We remark that there is no guarantee that it io
M8 exists for any surface point nor do we knot, It (,u,s,

ff . theorem is valid for a surlace whose power SpCLdr n s

,4;: like that in equation (B7). since we appl\ this formul,, t,
the simplified body with triangular facets. ,o dilli.uli,
arises, for the theorem is undoubted\ correct for regiors
with a piecewise plane boundary Ikclligg'. 1953. chap 41

The computation of the (iram nialrix has been reduced
to the ealuation of (29) over the set of plane triangles b

4 i  .which xwe hae approximated the surface of the hod lI ()r
2 L .. programming simplicity, we also tessellate the loer. plane

1oo 2000 Wooo 4000 boundary wkith the proiections off the triangles defining the
Depth z, ( mi) upper surface. The elements of the matrix A can be con-

Fig. 3 Upper bound on t he s eo i he e se agam net i notr al , verted to surface integrals bN an analogous process. ThedIuC to snioothing of' the surface of' tihe sin2lloun, b ' interpolkiton

is the 'ater depth oer the shallowest point of the sea.iounl, surface integrals for the Gram matrix cannot be performed

Sis the rms interpolation error The niagneti/'aiion is taken in terms of elementary functions except in certain special
to be 10 A m 1. and the error \.aries in proporlion to ihis figure cases: therefore we use a numerical integration formula.
Contour salues are in nanoieslis technically known as a "cubature" rule, designed for tri-

angular regions. Stroud 119711 gives a complete re.iew of
this question and provides several examples of the

where V (q) qi t(q. 3 - m and (in this dehfnition required type The integral of a smooth function defined
only!) I' (q . a) is the incomplete gamma function for poiints in the triangle T is approximated by a weighted[Abramniwi:- and Sw'gun. 1965. chap. 61: .q is defined to be sum iif samples of the function:

the positive q that makes Q(q) maximum, and with the

value of T) that we hae adopted, q = 1.163 and /.(Y) d , YCV.
Q (q, ) = 0.286. In Figure 3 we hae contoured the rms f
magnetic field in nanoteslas from these expressions, using
the value of 1(0 A m : for INI. Combining the informa- By an appropriate choice of w and _V it is possible to
tion in Table I with that in Figure 3 we ma., conclude that make the cubature formula exact for all polynmmial func-
depending on the water depth, triangles with sides tions in the plane with degree less than some upper limit.
between 500 m and 2000 m can be used without inroduvc- 1)i these are called degree-p formulas. This is equixalent
ing errors larger than 5 to 10 nT. to the fatmiliar Gaussian quadrature method on the real

The numerical evaluation of the integrals in (23) line The theory for functions of more than one ,iariable
represents the greatest computational burden in practical is lat from complete: for example, the smallest number ot
calculations. A large computational saving is achiexed by sampling points thai will \ield a degree-/) rule is not
reducing the volume integrals oxver V" to integrals over the known in general. It is nonetheless possible to generate a
surface a : following Pare, [19711. ,,e write (23) in the suboptimal formula by taking combinations of otle-
form dimensional Gaussian rules in a so-called "conical pro-

duct." The optimal degree-S rule f'or triangular regions is
I T = f 7 1" F l'F d's (28) known (formUti T, of' Stroud [1971, p. 3141): it uses

sexen sampling points In contrast, the degree-5 conical
"here product formula requires nine sampling points. With acomplete theorw, we woul be able to choose r cubature

= 1 rule with guaranteed accuracv for ever\ surface integral
Ir.-sI but wkith the presently av\ailable methods this is impracti-

which holds because B,, is a constant vector. Next con- cal. Even for simple functions bounding the error of this
sider the following identity, which is valid for sufficiently kind of approximation is difficult. Furthermore. Smrotut's
smooth functions: [1971. chap. 51 examples give the impression thi. the

bounds yielded by the available methods are of the crudest
VF • -V, = V - (F,71K , F.7 2F, kind, overestimaing the true error by several orders of

magnitude in almost every case, Sard's [1963] theor\,All the measurement positions lie outside the seatiount:
therefore l rl-s > 0, and so V2 r,-S I= 0 for all summarized by Stroud. provides a useful result for pur-

s E V. Since 72 commutes with , , this implies poses of comparison: for an integration rule of degree 1.

7 2 F, = 0. and thus the error depends principally upon the magnitude of the
largest derivative of the order of p + 1: this rests on the

V F, •1 F, = V (F' U-7- assumption that the integrand possesses all these deriva-

Substituting this into (28) and applying Gauss' theoremi lives which is true for our functions because they are ana-
lytic. Roughly speaking, the integrand of (29) behaves

gives like a
2 R, aR, ' where a is a first-order differential opera-

,or acting in the plane of the triangle and R is the dis-
' 7 FA, - (s ) ds (29) lance from the observer to a point in the triangle (and

similarly for Rk ). Combined with Sard's result, this sug-
where fi(s) is the unit normal to the surface at the point gests that the largest errors occur in contributions to the
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Similarly, the 25-point. conical product formlula is,
degree-9 rule, although the behatior of the relaitise error
curve is not I simple monotone decrease with 1) Wec

- ,,- -have expei,...ented with a variety of trian gle shape, in the

comparison with the exact integration we :onclude that it
- ,,the distance is normalized by the maximum length -Ia
- side. Figure 4 gives an upper'bound on the relatise error

and so it may be used as at guide to the expected ,,ckur.li..
of' the different CUbature rules

Based upon the foregoing discussion. we Lan des elop a

L ____ -strategy for efficient numerical integrat ion Bctause the
error exhibits such a strong functit a! dependerhe ti the

Siiz.1di~t.1 ratio of obsers er distance to triangle side. we shoul~d keepl
IFig 4 Relisje errir ,is ltmnion tI disiai~ 0 t-UT uhatiUre this ratio carefulls under control In the approximation (t
rules C-, ( ,. ( ,, and ( ,. ( is a se~en 111 p1 inii degree ( he seamount b% triangular lt es the sides of eler i rim -

rule The others are ciini~at produo I LIlesI 11 ee duhfCC ' J11 l tarn e.lt esh re h l h htrL~t j
The integrils ire the eonirihutiins it) 'he dtugima elmn (o th~.e rarngdthehrertite rdphmir
Girant nidiri\ (I in equilateral tcci side and ihe hscr'ci ie the shallii~est corner limies a ticltir. in prilike~ we base
the enter At he triangle ai a1 distanle 1) Insured t hat the Ilongest sideC itl .in1 triaingle nes er e sLeeds

tAikc the Aater depibh IPhs arringernn guaraiites Thait
the railt I) it ' I Igore 4 Is AIlras ei&L.1I~ d!,li 'Ilie

diagonal elements of Ihl, fak.'is Jose to the measurentent halt 1, Sirt~t the equLiluier,0i: rn~i i s , hais hir all
position because these are the cionditions under whith the Fi oe e ~ oeWtsihtel-iit~ia
highest derisatises arisL prr nuctrle AC Oilitie tiat sAlhul remapinhlui oline

A\s w~as noted earlier, somei of the integrals in t 211 -inl prtk~ in l (hnded ~iirl lt fAlitld elemns n het in

be e'.aluated in elemieniar% t unriions this happens whent than that tiir the oti-diagini t'nes The ~iu ntsand
i = 6,= i and i = A that is. oin the diaigiinal (I th weighs1r thi ormula .oe giuen in ITable ' To check
Giramt matrix The expressiions ire ciomplicited his til Fh caI hisa dth nerit~i ch~ctse h

not be set out here B\ comparing the exact Anld ri unteri- ,,heni, inl i tew ,ascs h% .ippl~ ing ( and ( , 1( the saime
cal %alues for these diagiunal element,, ue tan assess the: h(odl this test indKites that the errit,[ estirmite is Lonser-

performance oif' the approximation when it is, likelk it) he it 'ai\s eand! that \A e ilAsut s a,,hies eiUorJLIC esI Jt 10% pirts
its worst In Figure 4, we illustrate the pertfornmance ofin a t housand
fiiur numerical cubature rules I iser a range ofi obsers er- We imuLst undertstand hi,% preL use the appri ii llat io it, i

triangle distances The integration is, carried our rier Au the elements, of the arious niriues needs toi be We
equilateral triangle, and the obsers er poition mies oin a briefl consider the perturbauion theuur\ liii the siuution lo
line normal to the facet passing thriiugh the kcentriiid. all t(20) 'which sse abbre iate h%
the distances, 1. shiiwn on the hiiri/ontat Axis are ica-
sured to the closest point in thle facet normalized h% tiit & 1

side. The top line, marked C -, gives the relaitise error A5 The right side represents data t magnietic, anunal\ alIlies) -

a unction of' distance when the optimal sesen-purint rule is
ued. The most important point to nuite is the strong I ABI L 2 lDegree-Ser en (uhatuLre Rule C1,
dpendence of' the error on distance between the observai-

lion point and the faicet. As is expected, the error is gen- ii

erally smaller the more distant the observer is~. We can be I -8041- o(9(7s 0 10432

more precise by using Sard's result: the formula is exact ii 5635904it 36 0280(12784'8 0,022542322

for fifth-degree polynomials, so the absolute error should 0 2768430)14 0050210123 0 035388068
be be bounded by some constant times the maximum ().()57104196 0(065466995 0 023568368
magnitude of' the sixth derivative of' the integrand found 0.860240t130 (1.046122080) ki01016726))

in he egon f nteraton A hot clcuaton nolvng0 583590432 0.137419104 0.042339725
in he egin o inegatin. shrt alulaiii inolvng0 2768430114 0 238648660 0.066344216

spherical harmonics shows that for large distances the i),()57104196 0.3 1116455 2 0.044185089
sixth derivative of the integrand should decrease its the 0.860240136 01.093637784 (1.010167200
inverse eleventh power of' distance while the value itself' 0 583590432 0.278990403 t0,042339725
falls as the inverse fifth power thus the relative error 1276843014 (0.4845)08327 0.1066344216

0.,057104196 0,6317311252 0.044185089
ought to decrease with the inverse sixth power of distance. 0.860240136 0.1300356079 0.005423226
Our numerical calculations confirm that the error falls at (1.583590432 0.387497483 0.022584049
this rate asymptotically. The line labeled C, shows the 0).270843014 (1672946863 0035388068
error resulting from the nine-point. degree-5 conical pro- 0 f057104196) 0 8 77428809 (.023568368
duct rule the error here also falls like the inverse sixth satmpting points and %eights of the
power. Although the error is less at every distance for C, sixteen-point, degree-sesen, conical product
than for C,, the improvement is slight in view of the need cuhalTe rule on the right-angle-d triangle
for two more integrand evaluations. The behavior of the wsiih corners (0, 0)_.0 f1) aI ndt (1 It con-

structed ats descrihed hr Striomd 119711 The
16-point, conical product rule is shown by the line (ir: the correspto~iding values fur ln iither triangle
rule is exact for polynomials of' degree 7. and so for large mayt he lounrd by itmaiple linear r ransforniii-
D the relative error drops as the inverse eighth power. tlin
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and these are known at best to about a few parts in 102. model which implies that the resolution of any conceivable
Let f + E be the solution to a slightly perturbed data vec- set of data will be poor.
tor b + e, and for the moment, take B to be exact. Then Recall that the volume of the seamount times the mean

magnetization is just the total dipole moment of the body,
B(C + ) = b + e and if magnetic anomaly data were available everywhere

and it is well known le.g., Go/ib and Van Loan, 1983] that (or just on a sphere enclosing the seamount), the dipole
the perturbation in the solution is bounded as follows: moment could be deduced exactly from the field data.

Therefore some aspects of the model can be obtained
< 

K (B "ell (30) unambiguously in ideal circumstances, and we shall focus
l~l llbil on the average magnetization, U. The direction of the

where K is the condition number of B given by associated vector allows the calculation of the pole position
of the magnetic field at the time of formation of the
seamount if we assume the seamount formed rapidly

Here we take the vector norm to be the ordinary enough that the motion of the tectonic plate may be
Euclidean length, and we take the Frobenius norm for the neglected, and if we accept the axial dipole hypothesis
matrices, the square root of the sum of elements squared. [McEhinny, 1973, chap. 6]. The fluctuations of the secu-
The condition number, which is never less than unity, lar variation are expected to average to zero over a period
governs the way in which perturbations in the data are of formation of the seamount. The validity of the paleo-
magnified in the solution vector. It is impossible to pole calculation might hold even if the seamount captured
predict the value of K from general principles although we a polarity reversal, provided the opposite polarities are not
expect it to increase with A in (20). If the answers we present with exactly equal magnetic moments. Thus.
obtain are to be useful, the, must not be sensitive to instead of assessing the quality of our model at every inte-
small errors in b, and therefore the condition numbers of rior point with an analysis of resolution, we seek the
our matrices should be less than 102, and we have checked uncertainty in the single important property, the average
this in actual examples. Now let us examine how errors in magnetization vector. Since this is a linear functional of
the matrix B alter the solution: let the numerical approxi- the unknown model we take up an idea of Backus [19701
mation to the true B be B + E and the correspondingly and Parker [1977] on bounding collections of linear func-
corrupted solution vector be e + C': obviously tionals in [filbert space: our approach differs from these.

however, because of the way in which we handle uncer-
(B + E)( + e') = b tainty in the measurements.

and then there is a companion result of (30) that states Even though a complete knowledge of the external
I1e'll 1E I 1 1 magnetic field does uniquely determine U, practical mag-

-- ,< K(B)- I (B)-ll netic anomaly data cannot. This is shown as follows:
I1 l1 BI 11 1 choose U arbitrarily, and demand that a model magnetiza-

tion simultaneously possess this average and satisfy the
provided K(B)IIE11/11B11 < 1. We show that with an given data. The requirement of a particular average mag-appropriately small relative error in the numerical integra- netization may be written
tion, the right side of the above inequality is small in corn-
parison with the right side of (30). If the relative error in (x,, M) = (X,,, U) n = 1, 2, 3
cubature is always less than ,

Since the right side can be calculated, we have three addi-
Ie, vIB, tional equations to be included with the N in (5) provided

because in (20) the diagonal of V" is positive. From the by observation. Because the enlarged set of representers.

definition of the Frobenius norm IIEll/lIBI < v. It fol- including the three artificial ones X1, X, and X.., remains
lows that the cubature error introduces effects in the solu- linearly independent, the associated Gram matrix is non-
tion small in comparison to those due to data uncertainty singular, and therefore it is always possible to find a mag-tionsmal i coparsonto hosedueto atauncrtanty netization MI exactly matching the observations for any'
if the relative precision is an order of magnitude smaller choicetof U wh atever. T he of eainepen
than the relative error in the measurements. This is why choice of U whatever. The proof of linear independence
we have set the target for the level of accuracy in the is an easy extension of the one given in appendix A, This
cubature rule at a few parts in a thousand, negative result is no' as upsetting as it might at first

appear: when unreasonable U are chosen, the models gen-
erated may be unacceptable because fitting the data
together with an "unnatural" mean magnetization may

A complete analysis of any inverse problem includes an cause extremely large intensities and rapid variations of
assessment of the reliability of the solution. This is corn- the solution on a small scale. For example, any model
monly provided by an estimate of the "resolution" associ- with rms magnetization of 100 A m I could be rejected
ated with the given set of data. In our problem that kind even if it did explain the magnetic anomaly precisely: such
of study is inappropriate for two reasons. First, it requires an intensity is considerably outside the range of observed
a theory capable of dealing with a vector-valued function values for marine basalts established by extensive direct
in three dimensions, making the display and computation sampling in the Deep Sea Drilling Project of the crust
of the results extremely complicated. Second, even exact (Bled and Pelers n. 19831 and the sparser sampling of
values of the magnetic field measured at every exterior seamounts themselves (Kono. 19771. Since there is a gen-
point are incapable of yielding a unique magnetization erally agreed upon upper limit of magnetization for a plau-
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sible model, this factor may be included as part of the that (31) and (32) will be equalities in all cases of practical
informat;on to be used in determining the reliability of the importance. For this problem we use a variational
mean magnetization. approach: the stationary points of (33) are located by tak-

The Hilbert space P is apparently suited to this problem ing the Gateaux derivative of F [see Smith. 1974. chap. 21
because its norm is, after a scaling, just the rms magneti- and setting it to zero. The Gateaux derivative is
zation. An acceptable model is one obeying the two con-
straints: AF[M] = -2E [V(X,,. M)-(X,,. U.IX,

M , M ) r t- ' , . (3 1 ) %r

% + 2,M + 2,u [(, M) - djG (34)
Id, - (G, . M)F 2 < S 2 (32)

, Suppose this vanishes when M = MI. Then, because k is
where V is the volume of the seamount. (Strictly we positive, (34) can be rearranged thus
should write m(V), that is. the measure of the set I'.)
The average magnetization of an arbitrary M E P is given (35)

by N a , i

A [M] = I X,, (X,: M) where the coefficients a and b are various combinationsAM , of inner products in the representers and uniform ele-

This follows from the definition of the orthogonal uniform ments. In other words, the stationary value of [ occurs at

elements X, and an element of" P that is a linear combination of elements
G, and X,,. which puts M in the same subspace of P as

(X. X,) ',.. U.. Equation (35) is substituted into (33). and the
minimization problem is reduced to one in a finite-

We ask how far in the sense of the norm the mean mag- dimensional space, finding the appropriate coefficients a,
netization can be from U. and still satisfy both the data and b,,. The equations are expressed in matrix form if all
and a constraint that the rms intensity be bounded by the inner products are perfoimed. We find

,_ By solving this maximization problem we find that
limits on the uncertainty in the mean magnetization: if we - l" + [--
find quite large values of M,._ yield a small range for F=-II[.4 1'I]c-f1ll2+h1-k 4  

+ j'll [F 4 ]c -a41C

A IM, the data may be said to determine the mean mag-
netization well: if. however, the range in A [M] is large
even when M,,_ approaches values within obserational =-1181 - 13112+ Ac'Brc +ptIBzc - (i12  (36)

experience, say 10 A m i, it must be concluded that the
true average magnetization is not strongly constrained by where the vector t E R\ is a composite of the

the data. As we shall see, for the seamounts we ha\e cn d
studied so far the second alternative seems to apply: the c = (a .a.a ,. \ .b,. ,)b
rigorous analysis of uncertainty is disappointing and leads
to the unwelcome conclusion that a very wide range of and /3 E R3 is the vector of coefficients defining U. in the
average magnetizations are compatible with the data and uniform basis. In (36) the norms are ordinary Euclidean
the imposition of a prior upper limit on rms magnetiza- lengths of vectors and / is the 3x 3 unit matrix the other
tion. We have reasons for believing the true uncertainty matrices and vectors are the same as those appearing in
is much less than indicated by the bound given in the section 2: the correspondence between the matrices B,.
theory: we will take up this matter again. But first, we B,, B,, and the ones in (36) is straightforward.
sketch the theory for obtaining a strict bound. Viewed as a quadratic form in c. the functional F has

We write the mathematical problem as a minimization, only one stationary point which can be found b.
rather than a maximization: we seek the element of P differentiation: for any given John multipliers u and A, F
obeying (31) and (32) that minimizes - IA [M] - U.11 2. is stationary when
As in the previous problem containing inequalities, we
appeal to the John multiplier theorem, constructing the c= (-B(B, + ABI + IB4B) 'IWB d - B,13) (37)
functional The next problem is to find the appropriate multipliers so

F[M) = -IA [M] - U.112  that the data misfit and the maximum allowable norm are
N ,reproduced, the classical problem of unknown multipliers.

+ [{ [d, - (G,, M)121 + A (M. M) (33) We consider (37) to define the vector c as a function of A
and p, that is, c = c (x, A). In these terms the two condi-

where A.iu >p- 0 are two John multipliers associated with tions to be obeyed are that .f/'(. i)=.f,(,.i)= 0.
complementary slackness conditions where

%.(,I) c(A)X Bic(,ix) - M,,, (38)
p{Y [d, - ( W,, MI"- S'} = 0t ./'f (h, la A IB~c (A, AX) - d112' - S2 (39)

(M, M) - VM ,) 0 In principle we can apply Newton's method to solve this

Once more, we expect that neither A nor A will vanish and pair of equations once the derivatives are known:
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_._"- 2RO. -- = 2[B~c - We now 5. APPLICATION TO FELW DATA

a 2Ba'x We now apply the theory to a seamount survey per-

formed in the South Pacific. P. F. Lonsdale collected the
= f 2[B c - d rf data on the R/V Thomas Washington of the Scripps Insti-

&A m 1 A OA tution of Oceanography during leg 6 of the Marathon
Expedition in September of 1984. The seamount chosen

and from (37) for study, at 48.20S, 148.8°W, designated LR148.8W on
account of its longitude, is the youngest of a long series to

= -(-B Bo + XB + ABTB2) iBc be found on the Louisville Ridge. Total field magnetic
ax values were measured, and precise bathymetric informa-

c=(- BBo+x BI + uBB)-'B(d - B~c) tion (contoured in Figure 5) was available through a Sea
Beam system. Global Positioning System Navigation was
available for a part of the survey and for the remainder,

Here the functional under minimization is concave, not navigation relied upon dead reckoning based upon the
convex, and so uniqueness of the solution cannot be Doppler log.
guaranteed. In particular, there may be more than one Morphological and petrological evidence [Hawkins et al.,
(x,u) pair giving rise to the root f, (Xp) - 19851 supports the idea that the Louisville Ridge is a hot
f2(,,,u) = 0, that is, the desired values of norm and spot chain similar to the Hawaii-Emperor chain in the
misfit. If there are several solutions, we must choose the North Pacific but on a somewhat smaller scale, it appears
one that gives the largest value of 11Bc -,3112. In the to have been active for a comparable period of time.
absence of any theoretical results on this matter, the only LR148.8W is a large edifice at the southern and therefore
safe procedure is to explore the positive quarter plane younger end of the chain. It is believed to be quite
h, A > 0, evaluating a measure of misfit to the root such recent, less than 10 m. y. in age. We expect that the vir-
as fr + fi. Where this indicator function is small, the tual geomagnetic pole (VGP) of the uniform part of the
iterative process can be invoked to produce a precise root, magnetization should lie close to the present-day rotation

If (37) is used together with (38) and (39) the search axis of the earth, assuming the effects of secular variation
process would be very expensive computationally, since have been averaged out during the time of construction.
for every A, ji point we must solve (37), a linear system From Figure 6 we see that the magnetic anomaly is corn-
of the order of N, = N + 3, where N is the number of plex and does not resemble that of a uniformly magne-
magnetic anomaly observations, typically of the order of tized body (Figure 7), perhaps suggesting the presence of
150. After advantage is taken of the symmetry of the both normal and reversed magnetization, although normal
matrix, each solution requires of the order of Vi '6 opera- material clearly predominates.
tions, or "flops' [Golub and Van Loan, 1983, p. 90]. We The original records were prepared for inversion as fol-
can entirely avoid these costly solutions at the expense of lows. The Sea Beam bathymetric data were sampled with
two initial spectral factorizations- the details are set out in a spacing approximately proportional to the local water
appendix C. In most cases, the rearrangement described depth in order to ensure accurate numerical cubature in
in appendix C can achieve reductions in computational the computation of the Gram matrix elements as dis-
cost of a factor of 200 or more. cussed in section 3. A total of 295 samples went into this

Having found the vector c that minimizes the func-
tional F of (36) we compute the corresponding error cone
in the mean magnetization vector as follows. The vector
u E IR given by Io

u =Boc= [At VI I c

is the set of expansion coefficients of AIM], the average "
magnetization of the solution M, in the basis of uniform
elements X,. We may treat u exactly as the the uniform 4P -

part of the magnetization of the seamount; the vector/3 _
plays the same role for U.. Thus the angle between U and
/3, namely, cos-1(u'(3/lluu I11311) is an upper limit on the ,. •
angular uncertainty in our determination of the direction
of average magnetization, which can easily be converted
into the error of the paleomagnetic pole position. With 48 4
considerably more work one could obtain the cone of .. ..... -. -

uncertainty, by maximizing the angle in all the planes con- 149 0 1.188 '48 6 148 4

taining the vector 3-, the figure would be entirely con- Wct ongdiudc
tained within the cone we have just found and would cer- Fig. 5. Bathymetry of LR148.8W contoured at 250-m intervals
tainly not have a circular section. The complexity of the with 1000-m levels plotted as heavy solid lines, The solid circles
maximization problem and the rather poor performance of give the locations of the magnetic field intensity observations used

in the inversion procedure. The interior dashed box is the boun-the present approach with field data deters us from pursu- dary of Figures 6, 7. and 12. This box measures approximately 44
ing the question further. km by 34 km.
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48 10 
iH 0

4815 15 I00

48 20
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149 0 148 8 148, IH .
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Fig. 6. Magnetic anomaly associated with LR148.8W, contoured 0 o l 8 I , 4 4

at an interval of 150 nT. Negative contours are dashed lines, and A, 't "o''tI4,

the zero level is shown as a heavy solid line. The maximum Fig. 8. Plan view of the triangular facet model of LRI48.8W used
anomaly contour is 1200 nT. Notice that the scale of this map is in the numerical calculations There are 565 triangular facets in
slightly larger than that of Figure 5. the uppef surface of the model. the lower boundary is a plane

located on the 4250-m contour.

description. The coordinates in the horizontal plane were
organized into a tessellation best approximating equilateral 1982]. At the latitude of the survey, diurnal variations arc
triangles by Watson's [1982] algorithm, yielding 565 triatn- of sufficiently small amplitude that they may safel% bc
gles (Figure 8). When the appropriate vertical coordinate ignored. A subset of 131 anomaly values as shown in Fig-
is assigned to each vertex, the result is a model for the ure 5 was chosen to be the data for inversion purposes.
upper surface of the seamount in terms of triangular Notice that no interpolation or estimation from contour
facets: the lower boundary of the model is the horizontal maps was required: only magnetic values from the original
plane bounded by the 4250-m contour. We showed in survey were used along with corrected positions from the
section 3 that replacement of the true bottom surface by a Sea Beam map. Also analyzed were magnetic readings
plane and of the upper surface by triangular facets intro- taken during the ship's passage between seamounts of the
duces quite negligible error into the calculations. The chain. Seafloor spreading anomalies were prominent. but
model seamount is shown in Figure 9 as it would be seen LR148.8W does not straddle at reversal boundary: it lies

by an observer in the south looking in a direction 20' west on reversely magnetized crust between anomalies 26 and
of north and downward 10' below horizontal: in this figure 24 [Lonsdale, 19861. The magnetic field fluctuations in the
there is a factor of 5 vertical exaggeration. Notice the vicinity were found to have an rms amplitude of 32 nT:
almost flat top and nearly pseudo sphere appearance of the the power spectrum had the expected exp(-47T-:,) form
flanks of the volcano. Magnetic anomaly values were for a field of crustal origin, but the amplitude is much
computed from the original intensity measurerrents by higher than can be attributed to bottom roughness (see
subtracting a standard main ficd model, International section 3) and a reasonable uniform magnetization, and
Geomagnetic Reference Ficld 80 [Peddic and Fahiato, we infer that the observed field is due primarily to local

variations in the intensity of the re ersely magnetized
crust. We chose 30 nT as the le'el of misfit for model
predictions: notice that the p, magnetic anomaly o:

lo /t LR148.8W is over 1200 nT.
; The calculations of the Gram matrix V and the Green

78 -00 matrix A were carried out as described using the C1, and
C, cubature rules. The construction of the Gram matri\

.48 20 / is by far the most time-consuming part of all the computa-
'90 lions: on the Crav XM/P-48 at the National Science Foun-

48 25 dation San Diego Supercomputer Center, the (> calcula-
tion took 10 min, which would translate into several days

4IR 10

48 1fV

14) 0 11i88 1 o'8 I

W-t lorirqtu,

Fig. 7. Best approximation to the observed anomaly of Figure 6
by means of an uniform internal magnetization, contoured at an
interval of 150 nT. Negative contours ate dashed lines, and the
zero leve' is shown as a heavy solid line The maximum contour
is only 750 nT. Three additional parameters describing a linearly Fig. 9 View of the model seaiount as seen by an observer to
varying background field have been fitted, to allow for small the south looking 20' west of north and downward 10 The vcrt-
errors in the main field model. ical scale has been exaggerated b% ,t factor of 5.
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on a lesser machine. To check the accuracy of the numer- Least quar,, It
ical cubature, many of the subsequent calculations were 250 ,
performed with the matrices found by the two rules- no
significant differences were observed, from which we con- 200 \
lude that the C1, rule was satisfactory. f5

The first model calculation to be performed was the
traditional least squares fitting of a uniform model to the E too \

anomaly (with the additional free parameters for slope and
offset of the ambient field). in our notation this is just the Q 50 -
least squares problem (a)

Af3- d to 6 to+  to 100

which we solved in the usual way by QR factorization Multiplter ja
[Golub and Van Loan, 1983, chap. 6]. As we have already
remarked, the field predicted by a uniform magnetization -.
(Figure 7) is a very poor approximation to the measured
one. The rms misfit between the observed anomaly and
the model field is 269 nT, nearly 10 times the crustal
background noise of 30 nT. Therefore little confidence is
to be placed in the associated VGP location of 57.8'N,
118.9°W, which is far from the north geographic pole.
The intensity of magnetization of the uniform model is
3.7 A m '. a perfectly satisfactory figure. .

We turn next to the most nearly uniform solution - - - - - - .
obtained by seminorm minimization. The calculations -
involve the solution of the linear system (equation (20))
in section 2; recall that the multiplier A is unknown and
must be chosen to yield a model with the desired misfit.
Rather than single-mindedly exhibiting one solution with
the desired 30-nT misfit, we swept through a large range
of multipliers, calculating the VGP position and misfit for (b)

each. This is not a computationally expensive procedure.
and it is instructive. We saw in section 2 that very small Fig It Behavior of the solution, a, the parameter , %ar e , (,I
values of' A cause the solution to approach the least Rms mislit of computed lagnletic anonflh~j it) ,hserxed ,alue, as,
squares solution with its large misfit of 269 nT. while large function of John multiplier M A misfit of 30 nT is considered

a ppropriate. b Pole path o. the different solution,, shown in avalues of the multiplier lead to misfits approaching zero; Lambert equal-area proJection of the polar region. Open circles
this behavior is apparent in Figure 10a. At the preferred are pIleiS with rm, nislits ot 2WX. 150. and 100 nT from lelt to
misfit of 30 nT the VGP location for the uniform com- right. The star is the pole of the 30-nT misfit solution
ponent of the solution, U, is 83.0°N, 47.2°W, remarkably
close to the geographic north pole. The position of the
VGP is quite insensitive to misfit over a considerable mally magnetized and resembles V with its dip of 65 2
range: it moves less than 4' as the misfit varies from 5 nT and declination of -4.8' there is no ree,rsed material in
to 100 nT. This is illustrated in Figure 10b where the tra- these sections. It is the nature of our solution that the
jectory of the pole is plotted on a map of the polar region. magnetization is more irregular at those points nearest the
Such stability is highly desirable because our estimate of observations, that is, the points on the upper surface of
the uncertainty in the magnetic measurements is not pre- the seamount. and this is evident in Figure II Therefore
cise. The most nearly uniform model corresponding to near the peak there probably will be small pocket" of'
the 30-nT misfit has an overall rms intensity of magnetiza- reversed magnetization because of the greater fluctuation
tion of 6.22 A m 1. The nonuniform component of the of the soluti(,d on the boundar. Little credence should
solution accounts for only 0.78 A m ' in the sense of the be given to such features even though a seamount formed
norm. (Recall that the uniform part U and the nonuni- during the Cenozoic might be expected to contai noirmal
form portion R of the model are orthogonal elements of and reversed material. It is not possible to pro\e
P.) Thus only about 13% nonuniform magnetization is rigorously from the external field data that re\ ersed
needed to reduce the misfit from the 269 nT of the best- material is present; this follows from lhe fact that a,
fitting purely uniform model to 30 nT. Although the finite magnetic data set can be satisfied by a bod\ nolrt1all,
nonuniform part of the model is small in its contribution magnetized in its entirety, but we shall not go iti the
to the overall magnetization, its presence is a decisive fac- proof here.
tor in obtaining good agreement with the data. In Figure flow accurate is the paleopole of the mean magnlet/,a-
II we attempt to display the internal magnetization vector tion? In the previous section we described , theor.\ that
of' our preferred solution: the seamount is cut in three was capable in principle of providing the answer it we a.re
horizontal planes, and in each section we draw arrows, prepared to supply an upper limit on the rms rnagnctiza-
whose sites and orientations represent the magnetization lion to be found in marine basalls. The principle of the
distribution. We see that the bulk of the model is nor- method is to construct the worst possible case. the model
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1500. an upper bound and that the true error could be far
smaller than that bound. An explanation for the generos-
ity of the error bound in the theory of this paper may be
traced to a property of the norm of P: although the rms
magnetization of the minimum norm model is only

2425 i1.70 A m 1, we calculate that at some points within the
, model the local magnetization intensity rises to nearly

1500 A m 1, a totally unacceptable value. Thus a reason-
able rms magnetization is by itself no guarantee of a plau-
sible magnetization model. Perhaps a more suitable res-
triction would be that the magnetization at any point in
should not exceed a prescribed limit, say 20 A m . This
is a kind of uniform norm, but uncertainty estimates

-- _based upon it would be much more complicated than
3350 in those undertaken in this paper; the idea is probably worth

pursuing, but we do not take it up here.
Far from the seamount its magnetic field closely resem-

bles that of a point dipole, the influence of higher mul-
tipole terms having fallen away more rapidly than that of
the leading term. An analysis of three suitable field mea-

surements can yield the vector moment of a dipole. But
the dipole moment divided by the volume is just the mean
magnetization of the seamount. Another way of looking
at this question was given by Parker [1971]: we imagine
trying to construct the linear functional for X1, say from a

Fig I I Magnet(/,aton %eciors in three hortvonihl sections, ot the linear combination of the representers G,. The
seamrount at hathmer% contur leel (X) m, 2(ftfl .rand representers for distant observers are much smoother and
3(X)O m The solution ditustrated is ihe most uniform model vAth more nearly constant, so that they are much more valu-
rms rnisfit to the datla of 30 nT The length of the arro% lepicts
the strength of rnagneitiiion and the orientation can be inlerred able to the approximation. This discussion ignores the

Irom the asct of the oni .d head problem of noise in the observations; while the field
\alues far from the seamount have a more direct connec-
tion with the average magnetization. their relative accuracy

that lies as far as possible from the preferred solution is much less than those nearer the body' because the noise

while lying within the constraints set by the the data and fields do not drop off with distance from the seamount

an upper limit on the norm of'M. or equivalentlv the rms while the signal does. There must be an optimal distance

magnetization We could embark upon the search oser from the seamount at which the field values yield a max-
the A. p. plane seeking stationary values of- F in (33), but imum amount of information about the U; did the surve,
in the present example this is unnecessar. because we can of' LRI48.8W extend to that optimum distance? We have

find a model obeing the constraints with a completely reason to believe that it did not. A certain amount of

diffTerent VUP position, in other words we need not seek manipulation of (20) yields the following informative
the worst case In section 2 we discussed the problem of expression for f3 the vector of coefficients for U in the
finding an element in P nearest to a fixed element I'.' if basis X,

the fixed element is 0, the zero element, we will find the
smallest model of P fitting the data. The magnetization of'
this smallest model is, from (10), a linear combination of
the repre-enters G, . When this theory is adjusted ti 1i 1 ,,

include misfit and the three parameters for the ambient
field, it becomes an example of seminorm minimi/ation - ,
on P. and the necessary matrix elements are already "
aailable. Arranging ti to give the expected 30 nT misfit, .. . . . .

we find an rms magnetization averaged over the seamount .

ol only 1.70 A m '. and the pole position of the projection " •
of M onto the subspace of uniform elements is 60.1'N. . ""
34.4°E. Obviously this model has a small enough norm ". . •
inJ a good fit but its pole lies 30' from that of the most
uniform model; there is no doubt that by allowing a larger ..
norm, solutions with poles even further away must exist. .4,'..... ... "

Is it really true that the uncertainty in the uniform VGP i -14 8 148 t,

is so large? The fact that the direction is very close to 1$ t I l,,q t',

what one might expect on geological grounds encourages Fig 12 l)imcnsionless weight function expressing the influence
,f cacth ticld measurement upo n ihe estimation of the average

us to believe otherwise, it must he remembered that we uulagnetiaiumn The smal levels in the central region indicate that
hasc approached the problem of uncertaint hy estimating mnagneti meisaurements there ha\e liitle effect on I.'
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13 (A '(iI
A + t') 'A) (I/A + F) id shapes. We have shown why it is fundamentally impossi-

ble to deduce the true magnetization from external field
= 1$0/41T)w' d' data no matter how precise or complete it is. TherCore

where w is an .V x 6 matrix (remember the inclusion of our model has been selected to correspond as closel' .s
the three additional free parameters lescribing the back- possible to the simplest structure, the uniformly magne-
ground field), the factor g,0 /4r renders w dimensionless. tized body. Approximations to this ideal are expected on
This equation shows how every magnetic field measure- geological grounds if the seamount formed rapidly or dur-
ment contributes to each coefficient of the uniform com- ing a period of single polarity of the main geomagnetic
ponent of the solution. Column I of 4, can be interpreted held. Nonetheless, extensive modeling of actual
as a weight vector in an equation of the form seamounts has shown that the uniform model by itself

raTely gives an accurate account of the magnetic anomaly
= (d0/4r)w(d so that significant nonuniformity is certainly present.

When w, is mapped we see which regions of the survey Application of the method to a young seamount in the
affect our determination of 13, by the size of the weight Louisville Ridge chain yields a magnetization accounting
function. The average magnetization is insensitie to the accurately for the magnetic anomaly, we find that in the
magnetic anomaly in places where % is small, and con- measure of the norm, only 13',, nonunilormity is required
versely, it depends heavily on data where vv is large. to obtain the good agreement, even though the observed
(This interpretation is not strictly valid because if a anomaly is complex and poorly approximated by the field
different data value appeared at any point, the size of p of a uniform body. This result suggests that the picture of
would have to be adjusted to retain the desired misfit, an essentially uniform seamount may not be so inaccurate
thereby changing i; if the putati\e changes are smrll. so after all, but since even quite small amounts of hetero-
will the perturbation to p.) As a snopsis of the influence geneity have a disproportionately large influence on the
on all of U we have contoured (K , -, t in Fig- form of the magnetic anomaly, this has been impossible to
ure 12. We discover that our knowledge of 1 is deter- appreciate until now. We predict that relatively small pro-
mined for the most part by ,alues at the edge of the sur- portions of nonuniformity will be needed in all the
,ey If 36 data are removed in a IS-kni disk it the center seamounts with simple magnetic anomalies.
of the magnetic anomaly, thus obliterating the central The mean magnetization is a property of a seamount
maximum and the negative patch to the south of it. the that can in principle be obtained from the magnetic anom-
uniform part of the new solution has a pole position on]\ aly alone. The direction of the mean magnetization vector
60 away- from the one obtained with all the data. This is diagnostic of the paleomagnetic field averaged over the
confirms the relative lack of importance of the central period of formation of the body, and it is the most valu-
region for the purposes of obtaining an estimate of the able information about the seamount for tectonic studies.
uniform component The way in which the weight tunc- In our example we find that the mean magnetization vec-
tion grows toward the edge of the map strongly suggests tor predicts a paleopole very close to the north geographic
that the optimum distance for recovering information pole in agreement with our expectations; this is in contrast
about the average magnetization probably lies beyond the to the pole position of the best-fitting uniform model.
boundary of the present survey, and it must be concluded which lies 300 away. We have developed a theory for the
that to obtain the best estimate of the average inagnetiza- uncertainty in the estimate of the mean magnetization
tion. the area should be extended considerably. We anticl- requiring an upper limit on the overall rms magnetization
pate that with a more nearly optimal distribution of mag- allowed in the volcanic rocks, sampling and knowledge of
netic observations the error will bound significantly rock magnetism puts such estimates on a secure footing.
smaller. Unfortunately, the results for the Louisville Ridge

LR148.8W is a challenging seamount for analysis: the seamount are disappointing: the uncertainty is so large as
magnetic anomaly is complex and obviously incompatible to give the impression that the calculated paleopole posi-
with the assumption of a uniform interior. The fact that lion is unreliable. The excellent location of' the model
we are able to recover a reasonable VGP and that the pole leads us to believe that the true error is much smaller
minimum departures from perfect uniformity are very and that a better theory is needed for its estimation. We
mild gives us encouragement as we contemplate a wider show that significant improvements in the uncertainty esti-
application of the technique. Our seamount is an unusu- mates can b, expected to follow from a more extensive
ally large body. nearly 1600 km3 in volume, and it comes survey, since it is apparent from our calculations that data
within 500 m of the ocean surface. These two properties taken at a surprisingly great distance from the magnetic
are major factors in determining the computing time sources contain substantially more information about the
needed for our approach, particularly, when it is recalled mean magnetization than those closer to them. We would
from section 3 that the size of each triangular facet is not recommend dispensing with coverage over the central
governed by the local water depth. The majority of region in future surveys, however, because the shape of
seamounts would make much more modest computational the seamount must still be known in detail if its magnetic
demands. field is to be properly analyzed. It is to be hoped of course

that progress on the theoretical front will obviate the
necessity of' resurveying every seamount. In fact we may

We have presented a method using linear inverse theory anticipate here a refinement in the theory of error estima-
to construct an internal magnetization function for tion: recent work IParker, 19871 relying upon a plausible
seamounts based upon their magnetic anomalies and statistical characterization of the magnetic nonuniformities
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promises to provide the basis for an alternative and more small as we please. If s = (x, y, and increases
powerful theory for the uncertainties, without bound while x and y are fixed, F must tend to

zero. Thus c, must be zero, or otherwise the left side of
APPENDIX A: LINEAR INLuPENDENCF (A3) would grow in magnitude in the limit of large z. But

OF THE REPRIESENTERS if cI vanishes, the left side of (A3) no longer depends on

The linear independence of the representers in (2) z. Therefore the c, + f(x, y) must vanish identically for
every x and y, if F is to tend to zero when z tends to

guarantees the positive definiteness of the Gram matrix, infinity. In other words, the left side of (A3) is zero.
an essential property for a number of results in the paper. Thus equation (A3) has become
For any particular seamount and set of observer positions
one could in principle verify that I' had a positive deter- 0 (M)
minant, but it is more satisfactory if this fact can be =K - A4

shown in general as we shall now proceed to do. We fol- From this we show that all the y coefficients vanish too.
low the usual path of investigating the consequences of Renumber the coordinates and coefficients so that y is
assuming that the functions are linearly dependent. the coefficient of largest magnitude: also consider a posi-
Linear dependence would imply the existence of a set of tions so that Ir - sI = E. Then from (A4)
constants y, not all zero, such that

Vr"11 <j I
0= yG(r ,s) C ,ir

Now let R, be the smallest of all the interobser\er dis-
for every point s E I. From (2) we see this is equivalent tances Ir, - rA I- if E is chosen to be smaller than R /2 it
to is easily verified that

0= 90, 17 V F(s) (Al) 2..- (A5)

where R,
or

F,, (A2)
F(S r sn , . E C

For this appendix only, let us erect a local Cartesian axis where C is some constant independent of E. Since we
system with the : direction aligned with A. Then may choose E to be as small as we please, this means that
i. V = 6/8:. It is elementary that the only solutions to the y, largest in magnitude must vanish: so then they all
(Al) are of the form must. This contradicts the original assertion that not all of

them could be zero, and therefore we must conclude that
F(x,. v. z)= Z + + . ( y the representers are not linearly dependent.

where cl and c, are constants and f is an arbitrary con- Notice that the proof fails, as it should, if two of the
tinuously differentiable function of x and y. Thus linear observer positions are in fact identical: then R, would
dependence implies the existence of coefficients -y such vanish, and (A5) would not be legitimate.
that

APPiNitx B: APPROXIMATION () TLRR IN

Iz+ +. ± (X, j Y =(A3) BY TRIAN(ittAR F.(ITS
K , When the power spectral density of the bathymetry is

for (x,y, z) = s E V,. The functions I/jr, - sI are all known, it is possible to estimate the probable error com-
analytic in s inside V, so that if those coefficients exist, mitted by replacing the true surface by a plane triangle
(All remains valid by analytic continuation of the indivi- that interpolates the bathymetric values at its corners.
dual components of the vector everywhere outside I. Although to our knowledge no spectral studies exist for
except right at the singularities s = r,. Therefore the pro- the surface of an actual seamount, it seems plausible to
perty (A3) may be extended outside V in the same way. assume that on scales much less than the diameter of the

Consider a sphere centered at the origin of coordinates seamount, the surface roughness is approximately the
and enclosing all the observation positions: its radius Rj is same as that of very young oceanic seafloor or of terres-
greater than maxir, I. We evaluate F using (A2) at a posi- trial lava flows, and for both of these, quantitative analysis
tion vector s outside this sphere such that Is > 2R I it is available. We begin with data presented by Fox and
follows that Hayes [1985] on the spectrum of bathymetric profiles: one

I of their spectra describes the Gorda Rise, and we shall use
IFs) , j Ir, si the parameters estimated for this region.

We find it most convenient to develop the theory using
< Ny, the autocorrelation function of the topography. The

Is-I - (two-dimensional) autocorrelation function, R (-), is

2Ny,, defined by the expectation of the product of two samples
< ]sI of the topography taken at positions .V and Vt + Y (we use

IY rather than x to stress the fact that the vectors give
where ym., is the largest of all the magnitudes of the y,. positions in the plane), and this is related to the power
Thus by choosing Is I large enough we can make I FI as spectral density through the Fourier transform:
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R () = E[h (Y)h (Y + 1)] (1) suppressed an infinite constant term. The true autocorre-
lation function has a large but unknown value at zero, but

= J S(k) exp(2rriV- X) d2k the result we shall obtain (equation (B8)) is invariant
-2 under addition of any constant to R so that our ignorance

of the constant is unimportant.

f f S(k, , k, ) exp(Thi kx + k ) dA, dk, (B2) From (B6) we may calculate the isotropic spectrum
S [k I by means of a Hankel transform which is just the
inverse transform of (B2) expressed in polar formwhere S (k) = S (k,. k, ) is the wave number power spec- [Brace wel. 19781:

tral density of the topography. In practice it is found that

the spectra are fairly isotropic, so that S depends only on I'

1' and not on the direction of VK it follows that R is a S (k = , (27T kr1R rI 27rr dr
function independent of the direction of its argument vec-
tor. We denote the isotropic spectral density by S1K1
and the isotropic autocorrelation function by R [Ir. = ci(kl,,, (B7)
admitting the slight risk of confusion from this notation. where
Fox and Haves do not provide power spectral densities
SOD or isotropic spectral functions Sl}k11, but give - Ui [((1+ rjl/2)
instead the one-dimensional spectral amplitudes of' 7" I'M - y))/2)
profiles, functions we denote by A (k, ). Now For the constants we are using (-3 = 27,400 m4 . This

.4 ((k, S (k )dk, (B3) result will be useful in calculating the magnetic effect of
the roughness in the terrain.

Consider now a triangular region T defined by its
which is just the two-dimensional power spectrum corners at position vectors Y1, .V,, and Y; which lie in a
integrated in a wave number direction normal to that of horizontal plane. The plane-interpolated topography for
the profile [see Shure and Parker, 19811] since all direc- - E T is found from the values of the corners via a for-
lions are equivalent, any constant direction may be mula of the kind
chosen. If we evaluate (B2) for v 0 we see from (B3)
that (.-V = c ( h ( ¢)

R (.v 0) = f 1 (A, )- expl21-ik, x) dk, where the basis functions, d), are each I at Y and zero

along the opposite edge of the triangle, varying linearls
over T. We can find the variance of the interpolation via

= R[.\] (B4) the expectation, assuming as usual that h has zero mean.
Define

Thus the isotropic aulocorrelation function is just the
one-dimensional inverse Fourier transform of the profile 82= E[(h (Y) - h (U)).]

power spectral density. Then, using the definition of the autocorrelation function
Fox and Hayes find for many kinds of terrain a power (BI) and performing a certain amount of algebra, we

law holds quite well: we rewrite their result: obtain

A,(, c i(k, " (B5) 6V= R[01(1+ Y_ 1+ 2R [i.v -. k, 1] (.Vb, (V

where I,, is an arbitrary constant with dimensions of
length. After a careful interpretation of the unusual units - . 2R 1- . ] (-V)
used in the paper, we calculate that for the young volcanic
terrain of the Gorda Rise. c = 4800 m' and 77 = 2.48 Next we average over the triangle T
when 1, is set to I km. Equation (85) cannot be substi- ,
tuted into (114) in a classical way becaae the Fourier f , :V/A
integral diverges owing to the singularity at k, = 0* in fact
this shows us that the extrapolation of the spectrum to all where .A is the area of the triangle. Then, performing the
wave numbers is not strictly legal since it possesses infinite integrals involving the basis functions we find
energy caused by contributions at long wavelengths. low-
ever, it is only the short wavelengths that concern us here h, = R [0) + - R I .-. , II
and so we use distribution theory to evaluate the Fourier 6 "

transform IGe/fandandShilov. 1964. p. 3591: f 2R I :,-6.i (:V) +V (B8)

R Jr = 2(27r)" Ic, , 'sin(nr-/ 2W (I-Y) (r/I I

= c2(r/lu)nt (B6) This is a general result, not depending on any particular
choice of autocorrelation function, except that isotropy has

In this appendix, F is the familiar special function, not the been assumed. In substituting (86) into (B8) it is con-
Gram matrix. We find c 2 = -239 M

2
. It is at first aston- venient to define a cyclic extension of the corner vectors

ishing that R 101 = 0 and that it is negative elsewhere: the so that V., = V ., for .I = I. 2 and similarly for the angles
explanation is that the generalized Fourier transform has at the corners associated with each Y . which will be called
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0j. We wish to separate the effects of size from those of B, = Q\ QI
triangle shape, and so we introduce normalized side
lengths, referred to the area of the triangle: where Qj is an NjxNj orthogonal matrix, whose columns

3, = I.V,-, - Y"_2111 . With all this we find after some are the eigenvectors of B1, and A is the diagonal matrix of

effort that (B8) becomes eigenvalues. Notice that all the eigenvalues should be
positive because B, is positive definite: in practice, small

F2= -c 2 (A //)'1 t0(T) (B9) errors in the cubature may cause this to be untrue for the

where (-)(T) is a shape factor for the triangle given by actual numerical array and so it is necessary to regularize
the problem by adding a small positive constant to the

2 I (j ,)_ ' 1_0 .. (.,)., I diagonal of B, or by taking absolute values for the eigen-( (T) (1310)
,I (1+ 1) (,0+ 2 (., )"- I 6 values. When this is done, the square root of A is definedas well as its inverse: we denote this in the obvious way.

and here the function 4' is the integral Next we compute a singular value decomposition [Golub

_and Van Loan, 1983]: let

sin"' 1d B,QI,\k = ZsYQ

where the matrix on the left has been computed from its
= coso F(lr-/2. 1/2: 3/2: cos-0) known factors and those on the right are the singular

value decomposition factors. Z, and Q. are orthogonal
where F is Gauss' hypergeometric function: power series arrays of the appropriate sizes. I is an Nx NI matrix.
expansions given by Abramowitz and Stegun [1965, chap. Y = [1' O1
15] are quite convenient for evaluating '*. The function
(-)(T) is plotted in Figure 2 for the value of ?I = 2.48 where Y' is the NxV diagonal array of singular values.
given for the Gorda Rise by Fo and Haves 119851. The and O is a Nx3 array of zeros. Notice that these two
smallest value is attained by equilateral triangles with computationally expensive factorizations need be done
(-)(T) = 0.3198 and only extremely scalene triangles only once per seamount. Now define the 3×Nj matrix B
achieve values above unity, by

The Fox and Haves study gives spectral estimates up to = BQ. Q
k, =5 km , or a wavelength of 200 m: it would be help-

ful in confirming our analysis f we could show that the When these factorizations are substituted into (37) we
same power law extended to smaller scales. We have obtain
compared their spectrum with one found for a subaerial
la',a flow in Bonito Arizona [Jacger and Sthurng, 19661 Qlk Q

The largest wavelength estimated in this spectrum is 10 m. %here
so that there is, unfortunately, no os.erlap. We find that - -
the marine spectrum, extrapolated to the shorter scale is = (-B,. A i + / E I Q!.A Q{ B!d - B,3
consistentl\ a factor of 10 smaller in power It i,, likel\ = - f , + xI + t .y) I
this discrepanct result,, from the fact that the Bonito flow
consists monstl of aa. which is almost certainl much • QO.\ Q(Bd + QI.\ Q1 BI3
rougher than the expec!ed surface of, a scamiunt on the = X xI + A.Y'1) ,(v - 1,) (ClI
small scales

Obser\e that the vectors vi and v. do not depend on x or
u. Equation (CII is a transformed version of (37). The

,I''t1 "tix C': " in x Lt'rl iiR t I ?s functions /I and / are simply expressed in terms of the
[Mi ttlt A, JA P '."t vector ?. which becomes the working variable during the

In this appendix we describe a practcal mean,, for solu. heavy calculations:
tion of (38) and (39) Certain roots of thc equations -

gi\,e rise to magnetizations of prescribed norm and data
misfit that are as far as possible from the unifiirm state It I: liT_ - Z~dl: -

is possible that other stationary points exist to the optimi- In (CI) we still must solve an ,Vlx.V linear system for
/aton problem that do not correspond to the desired max- each A, u pair, the key to the efficient realization of this
irium, so that a fairly complete exploration of the A, ;A process is the fact that A, is not a square array but only
pine should be performed to uncover all the roots For 3xN and that AI + ,u YI is diagonal. We denote this
this to be a practical proposition, an economical method diagonal matrix by D (X. p ) and apply the following matrix
must be found for solving (37), the large system of linear identity, cilled the Sherman-Morrison-Woodbury formula
equations associated with each point in the plane [Golub and a n Loan, 1983, p. 31

The fundamental idea is the possibilit) of findingasin. A L 1 I - .4 (I+ 4 .. .'A
gle similarity transform simultaneously mapping two sym-
metric matrices into diagonal form (Go/ub and lan Loan. where .4 is an square invertible matrix, L" and K are of
1983, chap. 81. First we solve the eigenvalue problem for the proper sizes, but not necessarily square, and the left
the matrix 81 and write the solution as the spectral factori- side must exist If we choose .4 = D (k. .) and U =

zation: - W = A[ then
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Frequency Dependent Polarization Analysis of High-Frequency Seismograms

JEFFREY PARK'

Geophysical Fluid Dynamics Program. Princeton Universit'. Princeton, New Jersey

FRANK L. VERNON IIl AND CRAIG R. LINDBERG

Institute of Geoph.sics and Planetan Physics, Scripps Institution of Oceanography. Linitwrsinv of California. San Diego. La Julla

We present a multitaper algorithm to estimate the polarization of particle motion as a function of
frequency from three-component seismic data. This algorithm is based on a singular value decom-
position of a matrix of eigenspectra at a given frequency. The right complex eigenvector
corresonding to the largest singular value of the matrix has the same direction as the dominant
polarization of seismic motion at that frequency. The elements of the polarization vector ; specf,
the relative amplitudes and phases of motion measured along the recorded components within a
chosen -equency band. The width of this frequency band is determined by the time-bandwidth
product of the prolate spheroidal tapers used in the analysis. We manipulate the components of '
to determine the apparent azimuth and angle of incidence of seismic motion as a function of fre-
quency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the
estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic
Telemetered Array in the frequency band 0"< f , 30 Hz The polarization is not always a smooth
function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes
within the crustal waveguide and/or receiver site resonances

1. INTRODUCTiON body wave codas may be a well-defined polarization and

phase that varies with frequency. The distinct spectri,
The polarization of particle motion as measured by a peaks seen by Park et al. [this issue] in seismic spectra

three-component seismometer has been studied by a observed on the Anza Seismic Telemetered Arra% [&l'rg'r

number of straightforward methods, most simply by trac- et al., 19841 suggest that waveguide modes ma. be esident

ing the projection of the motion as a function of time onto in the complex waveforms of events at epicentral distances
a chosen plane of reference. Although useful to illustrate of 100-250 km. Inhomogeneities in the crustal
the particle motion of simple arrivals, this practice is quali- waveguide can lead to scattering and coupling of these
tative and less useful with complicated signals. propagating modes (see, e.g., Kennett [19861 and Odom

The problem of extracting a particular lype of wave [19861 for a description of these effects) which will, in

(e.g., P, SH. Rayleigh) from a noisy background has been general, cause frequency dependent scattering In such
studied by correlation techniques and special filters [e.g., cases, it is more useful to determine the type of seismic
Kanasewich, 1981; Archambeau and Flinn, 1965: Vidale, motion from its polarization signature, as in the studN of
19861. Most of these techniques are designed for time Vidale [19861, than to attempt tC;isolate phases
domain analysis and implicitly assume that the waveform In this paper we develop and demonstrate another algo-
has essentially the same polarization over all or most fre- rithm for determining the frequency dependence of the
quencies. Samson [1977, 1983abc] describes a method of polarization of high-frequency seismic records. We hase
estimating the polarization as a function of frequency. used multitaper spectral analysis [Thomson, 19821 to est:-
This is important for the analysis of seismic records. The mate the spectral density matrix S(1) of Samst [1983a]

seismic waveforms of local and regional distance events This has several advantages. By employing prolate
are often superpositions of direct, refracted, reflected, and spheroidal wave functions as tapers (instead of cosine or
scattered waves, with no guarantee that the polarization or boxcar tapers) to obtain direct spectral estimates, the ele-
phase are constant in frequency. In the presence of strong ments of the estimated spectral density matrix will be less
scattering, one might not expect a respectable "pure state" biased [Lindbe,'g. 1986; Park er al.. 1987. It is also not
polarization at any frequency. Alternatively, coherent necessary to apply a moving average to the density matrix
addition of scattered waves within the crustal waveguide estimate to smooth it smoothing is obtained by summing

will produce traveling modes whose signature in extended the eigenspectra of each component of motion (see equa-

tion (3)). Using multilapers to estimate the spectral den-
sity matrix is more suitable for very short records, such as

'Now at Department of Geology and Geophysics. Yale Univer- those which include a single seismic phase. This is
sity. New Haven, Connecticut because data are not discarded by applying a single bell-

shaped taper to the record. (A similar method has been
Copyright 1987 by the American Geophysical Union independently developed and applied to magnetometer

data by Lanzeroti er al. [1986].)
Paper number 686235 We analyze a number of three-component records of
0148-0227/87/0068-6235$05.00 seismic codas. In these observations the source pulse has
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been dispersed and scattered within the crust. In an ideal- of each component of x () can be made. Then a multi-
ized picture the shape of the source spectrum is retained taper estimate of the spectral density matrix is
in the shape of the coda spectrum, but the spectral phase I M"cf) M(f)
is randomized by scattering effects. Despite this random- K
ized phase, one might expect the particle motion to retain
the polarization behavior of the type of wave motion dom- where superscript H denotes conjugate transpose and
inant within a selected frequency band. Polarization J.( ,,V) V
analysis in the frequency domain offers an opportunity to
characterize the signal better. With three-component data M,,111f) Y.(f) V) 1,,131

we have potentially three independent polarizations. If
scattering is not great, a single polarization will predom- YK1 ' If) Yh"2i (V) y.3' (
inate. This assumption is often true for the P wave coda.
If, for instance, interaction with crustal structure decou- The value of K, the number of eigenspectra used.
pies SH and SV motion, there may be two principal polar- depends on 2 W, the width of the frequency band in which
izations in the S wave coda. The algorithm we describe in the spectral energy at frequency f is concentrated. The
this paper offers a quantitative criterion for identifying the K = 2NW7 - 1 lowest order eigentapers possess sufficient
single dominant polarization, spectral leakage resistance to be useful [Slepian, 19831.

In section 2. our multitaper polarization analysis To investigate the eigenstructure of S(f), we perform a
method is described. We apply the algorithm to a syn- singular value decomposition M(f)=U .D.V/. where U
thetic pulse example in section 3. In section 4 we show is a K x K unitary matrix of left eigenvectors of M, V is a
examples from the P wave codas of data observed on the 3 x 3 unitary matrix of right eigenvectors i, of M. and D
Anza Seismic Telemetered Network. Section 5 summar- is a K x 3 matrix with D, = d,, j = 1,2, 3. the singular
izes our findings. Uncertainty estimates for polarization values of M, and D,, = 0 for i - J [Golub and Van Loan.
angles and phases are derived in the appendix. 19831. The polarization vector i is the right eigenvector

corresponding to the largest singular value of the matrix

2. POLARIZATION ANAiYSS WITH M. It specifies the direction of particle motion at fre-

TIE MULTITAPER ALGORITtHM quency f which contains the largest fraction of seismic
energy [Samson. 1983b]. The components of i can be

Polarization analysis involves determining the eigen- complex, allowing for phase lags between components.
structure of the spectral density matrix S(f). Suppose Phase lags between components represent elliptical particleone has three-component data recorded in the time motion. Our ability to identify i with the principal polari-

domain of the form zation of motion at J can be qualitatively assessed by

x (t) = (X1 ),X'(t)..X 3 ( ) t = n= n = O, 1 .- V-I comparing the singular values d I d, . d,. If
d, >> d, d., the polarizatior i I is well determined.

where - is the sampling interval, N7 is the length of the We can use the ratio of the singular values to estimate the
time series, the coordinate system is right-handed, and uncertainty in i and any quantities we calculate from it.
xI (t ) is the vertical component. If the j th record .v 0) The estimation of the polarization uncertainty follows the
has the frequency domain representation (). the spec- derivation of Park and Chave [19841 and is outlined in the
tral density matrix S (f) has components appendix. If d, d, >> d, there is a strong possibilit.

S, (f ) = E (:, ) *:I (/)! that coherent seismic motion at f. exists at two separate
(f ~('J~~polarizations. The dot product si*.€20b vru o h

where E denotes the expectation operator. Samson singular value decomposition. butpr ct n 0 b l virtue of the

[1983a] forms an estimate of the spectral density matrix, sip needcryoito t this orthogonal relation-
.90/, with components ship need not carry over into the seismic polarizations. In

an S wave arri~al, one expects SV and SH motion to be

S; (I = (1, (f))*yv (v/) ij = 1.2.3 orthogonal to first order in most situations, but the super-
where position of other signals (e.g., reflected P arrivals) need

1-- I not have orthogonal polarizations.
Y ([I - ---- N ,..x"(n ) .. 1) If d >> d,d, the three-component particle motion

" ' x ) in the neighborhood of frequency .1 can be
is a discrete Fourier transform of the .1th component of represented by the real part of Rie : ". where R is the
x It) and ,, , is a chosen data taper. 1 he matrix S (. ) amplitude of motion. We can adjust the phase of i so that
is then smoothed in the frequency domain by applying a R is real. If there exists a phase (, such that ic - is purel
moving average, and the eigenvectors and eigenvalues of real, then all motion described by i lies along a single line
the smoothed matrix are found. in three space. More generally, particle motion will follow

To apply the multitaper algorithm to the estimation of an ellipse confined to the plane spanned by the two real
S (f). one employs a set of K prolate spheroidal wave vectors Re(i) and Im(i). If this ellipse is strongly
function "eigentapers" v,," W(N,.  k = 0, 1. K--I, elongated along its major axis, reasonable horizontal and
which are optimally resistant to spectral leakage from out- vertical azimuths can be found. If the wave type is
side a chosen frequency band of width 2W IThornson, known, such as a P wave, then the propagation direction
1982. Lindberg, 1986 Park et al.. 1987]. For can be determined. Strongly elliptical polarization suggests
k - 0, I._ K- I the spectral estimates modelike particle motion (for example, a Rayleigh wave)

% Iwith a poorly defined angle of incidence.
-Y_, I v!h(NA )x'(n7)e 2 , We can project the particle motion described by the

7 , 0 complex unit vector i onto an ellipse in the horizontal
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elliptical motion with the major and minor axes oriented
along the axes of the instruments. If z 2= _iz3 , the parti-
cle motion is circular, with no definable azimuth. In this
case, the uncertainty in (-)H, given in the appendix, goes to
infinity as it is proportional to IzJ+zi I .

The expressions relating horizontal to vertical motion
A_--_____+8, are similar. We want to find the angle (-)[ made with the

Averticaf by the major axis of the ellipse defined by
3 Re(ie 2 1). Define the phase angles

1f = 277ft = -I/arg[z_-z4] - m(

where m is an integer and z = : - zL The phase angle
Fig. I. Diagram to illustrate the definitions of the polarization N, is the value of 0,,, at an m for which the particle
angles H_-H and 4.. The azimuth -)H is restricted to [-180. motion displacement is maximized. The angle of
1801 and is measured counterclockwise from ',. The angle ('H inion is
is chosen by determining the maximum horizontal displacement incidence is
of the particle motion for which 01i will fall in the range
0 01 < 900. The ellipticity of the particle motion is defined by Re[zie '"" I
the amplitudes 1:I. I:,1. 1:31 and the phase angles O, and 61H ' = tan i (10)
(defined in text). I Reze '"II

where ImZH . 0. The absolute value is taken to restrict
plane which is defined by z, =i-('i*, where 0,i to lie between 00 and 90*. the usual convention for
il= (1.0,0). The major axis of this horizontal ellipse is the angle of incidence (Figure 1). The phase lag between
taken to be the principal direction of horizontally polarized vertical and horizontal motion can also be defined. Define
motion. To find the azimuth of the major axis, we deter- 61 =9, -hi. Since the end points of the major axis of
mine the point of greatest displacement for the projection the horizontal motion ellipse correspond to Q,, and
ZH in the horizontal plane by finding the maximum value 9,, ± ,r, we can restrict the range of 61H to (-90' , 90').
of

Re (zHe' 2 
1)12 (4) 3. A SYNTHETIC EXAMPLE

If the components (zz,..z3) of i are expressed in the We first illustrate the definitions of(-),,, N ,6l, and
form z =~ Ij6e'1, this is equivalent to finding the maxima b11, in a synthetic example. We constructed a three-of component record (Figure 2) from a sum of cosinusoids:

Iz2I
2cos2(27rft-6 2) + I:312cos(2r-ft'6 3) (5) x(n7) = 0cos 1I cos (27rfn7 - '

50 )

The extremes of this expression, remembering 0 80 50

Iz212sin26 2 + IZ 1
2sin26 3 = lm[z?-:i 1 (6) x 2 (n7) = 0 Cos -2---. sinL cos (27-fn-) (11)

1 0r1 80
are found when the phase angle R defined as 9 = 27rft I 12LI
takes the values x 3(n7) = sin - I sin cos (2,rfn)

1 20 1801
01 = 1-1/ arg[z,' -. ? ] (7r (7) 1.-- 1

2 where n = 0, 1,...V- I and the sampling interval is

where ( is an integer. Let I be the integer closest to zero = 0.004 s. The polarization vector of this signal can be

which minimizes (5), the horizontal displacement, and for written immediately as

which Re (z ) < 0. Define the phase angle 011 to be the
value of 0 for this (. Once OH has been determined, the
horizontal azimuth of the major axis (')H measured coun- Polarization test series
terclockwise from 2= (0,1,0) can be defined as 10.. - 0

t Re(z3e '"H) component 1
= tan Re(z2e Re(tan '(z3/z,)) (8) 0

1 Reze' ]- 10

The range of the arctangent function is 00< (-)H < 1800 if component 2

Re(zlz3') <0 and -180"<(-)H,< 0* if Re(zlz 3 ) >0. If 20
the particle motion is P like, (-)H can be interpreted as
pointing in the direction of the wave source. A represen- -30 - component 3
tation of an elliptical motion for which (-)H < 0 is shown in
Figure 1. 401

Another useful quantity is 6J-62 6tH, the phase 0.0 1.0 2.0
difference between the horizontal components of particle tire(sec)
motion. If 'ib2-6=3 0* or 180", the particle motion is
predominantly linear. The value 62 - 61 b, 900 represents Fig. 2. Polarization test series.
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Fig. 3. (a) Amplitude spectra and polarization angles calculated from the test series. Spectra for components I
(solid line), 2 (coarse dashed line), and 3 (fine dashed line). (b) The singular value associated with principal polari-
zation is plotted against frequency (solid line), and the secondary singular values (dashed lines). (c) Horizontal
azimuth of particle motion. (d) Phase angle defined by the major and minor axis of the horizontal particle motion
ellipse. (e) Angle of incidence of particle motion measured from nadir. (J) Phase angle defined by major and
minor axis of the vertical particle motion ellipse.

IL~±1 0,-) = 90' P., 25 Hz. At higher frequencies. 6~,, > 90'. the

e- ' I eU 1 . cos sin I ,1 sin f relative sign of vertical and horizontal motion reverses,=Cos 80 20 and the particle motion ellipse "tips" in an opposite1 l manner relative to its orientation for < 90'. This
*sin I- 7 (12) causes the observed 180' jump in apparent horizontal

180 azimuth (-),. This example suggests that one should use
where 611/ = 0 and (1), = (-7rf): 50. Figure 3 shows the caution in interpreting the angles (-),, and - wherever the
results of a multitaper polarization analysis for frequencies particle motion is nearly fully elliptical, i.e., when dbil or
0 f < 30 Hz. The uncertainties are plotted as one stan- 'kiH is within 20' of ± 90.
dard deviation error bars in this and succeeding figures.
Figure 3b shows the three scaled singular values as a func-
tion of frequency. The principal polarization appears well
determined. The amplitude spectra for the three corn- We illustrate this method of determining the polariza-
ponents are plotted in Figure 3a. The angles (-), and O.j,, tion as a function of frequency with several examples. We
are plotted in Figures 3c and 3d. The angle d,1 1 is not analyzed several waveforms which were recorded on the
well determined near zero frequency, as the horizontal sig- Anza array after an earthquake that occurred at
nal amplitude is dwarfed by vertical component energy. 0521:39.5 UT, September 9. 1982, with hypocenter posi-
The apparent horizontal azimuth 011n "wraps around" from tioned at 32.93'N, 115.85°W, and depth 4.2 km. The
1800 to -180 ° at 20 Hz and jumps 1800 at 25 Hz. The magnitude M( was determined to be 4.4. The event was
former jump is obvious- the latter is an artifact of 01,, located near Svperstition Mountain. California, on the
passing through 900. The phase angle dHII estimated western edge of the Imperial Valley. The earthquake was
from the synthetic record, has a value of 00 or ± 1800 , to recorded on only four stations in the array (PFO, KNW,
observational accuracies. These values correspond to rec- FRD, and CRY, see Berger et al. [1984] for the definitions
tilinear motion and are dependent on the quadrant where of these three-letter acronyms) as the event occurred prior
the horizontal azimuth is directed. The phase lag 01,, to the completion of the array. The hypocenier was
between 6ertical and horizontal components is well deter- roughly 100 km southeast of the array. The m = I corn-
mined everywhere except very near zero frequency where ponent is the vertical seismometer output with positive
the horizontal component amplitude vanishes. The ellipti- motion defined as up. We choose the m = 2 component
city of particle motion disrupts the linear trend in -, as so that positive motion points 450 east of north. Positive
shown in Figure 3e. At 25 Hz, d,, = 900 and the particle motion along the m = 3 axis is directed 450 west of north.
motion is an ellipse with major and minor axes oriented forming a -ight-handed coordinate system. Let the angle
horizontally and vertically, respectively. Therefore 011 be measured counterclockwise from the primary hor-
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Fig. 4. Anza data used in polarization example. Range in kilometers and expected N~,j are gisen in right-hand
columns. Maximum amplitude in counts is given in cit-hand column, along with station code and component
number,

izontal axis (m =2). If the wave propagation is along a Polarization analysis reveals that the first arrivals have
straight line connecting the source and receiver, complicated polarization signatures. The time window
-85 > 0-,, > -*98- for the four stations. The first 30 s taken is short (1.6 s), corresponding to a Rayleigh fre-
of recorded motion for this event are shown in Figure 4. quency I/ (.V7) of 0.625 H-z. Analysis using seven 4 7r pro-
along with range and azimuth information (azimuth is late tapers averages energy over a band of' width 8, (.\'7),
measured counterclockwise from N454E). Both S and P so that all of (he estimates shown represent an average
arrivals are extended wave trains, although the S energy is over a 5-Hz frequency band. If the true polarization
more concentrated in lime. An interesting feature of this varied significantly over this bandwidth, one would expect
event is the small precursor to the main P arrival, shown ol 6-~ 1b,,., and 611 to be relatively poorly determined.
in the enlarged detail for stations FRD and CRY in Fig- The results for FRD are shown in Figure 6. The singular
ures 5a and 5b. This waveform corresponds to a lower values d,2 and d, displayed in Figure 6b' show local maxima
crustal phase. at several places in the spectrum from 0 to 30 liz. Mia\-
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Station IRD Station CR) case as the nominal angle of incidence. varies smoothly
with frequency in Figure 6e, with II-J+ 25' 30' for

5000 I f O 10 Hz, and -h 15O above 13 Hz.

0 VET 0 VERT- . Figure 7 shows an analysis of the small amplitude P
''i" 'I precursor observed at station CRY. The variation of the

-550000 largest singular value d, with frequency shows four fre-
E5000 quencies (2.5, 7, 12, and 16 Hz) at which the principal

-0000 - polarization vector is poorly determined, and there is a
-100o peak in d2. Each of these peaks in d, occurs where there

-150 NOW is an abrupt change in the three-component spectra and in
-150o0 one or more of the polarization angles. Although the

20000 estimated uncertainties are larger than those in the last

2 0 3 0 4 0 4 0 5 o 6 0 example, the variability among frequency bands is clear
time(sedc time(sec) visible in Figures 7c-f Motion in the horizontal plane is

Fig. 5. (a) Plots of precursory waveform observed on station dominantly elliptical below 14 Hz, but particle rotation
FRD. (b) Plots of precursory waveform observed on station
CRY. The portion used for spectrum analysis is bounded by proceeds in opposite senses in the two frequency bands
dashed lines. Both horizontal components at station FRD exhibit 2.5 Hz ( f _< 7 Hz and 7 Hz < I ( 14 Hz. The azimu-
visible 60-Hz power line noise. The spectral leakage resistance of thai angle (-), hovers near the value expected for the epi-
the 47r prolate eigentapers used in the analysis guards against bias center (-85'), but our synthetic example in Figure 3 sug-
in the frequencN band of interest. gests that this may be due to the -90' phase lag between

component motions. At higher frequencies, including the
ima at 2.5, 7.5, and 14 Hz correspond to boundaries substantial spectral peak at 18-20 Hz. the observed hor-
between distinct spectral features (Figure 6a). All the izontal azimuth of particle motion is roughly transverse to
maxima below 25 Hz correspond to frequencies at which the arrival azimuth, as though the energy at these fre-
one or more of the polarization angles change rapidly. quencies were SH in character. A better interpretation is
Horizontal motion is roughly rectilinear below 13 Hz, but in terms of side-scattered P energy, as the vertical
its azimuth is variable and significantly different from the azimuth of particle motion -), remains in the 20'--40'
nominal azimuth of -87". In fact. the largest amplitude range across all frequencies in Figure 7e.
signal, from 8 to 13 Hz, is oriented clockwise 125' from Similar behavior is observed on stations PFO and KNW.
the primary component, a deflection of nearly 40' from The nature of this polarization behavior is quite puzzling.
the nominal P wave arrival azimuth. The phase lag It is unlikely that instrument calibrations are at fault. A
between horizontal and vertical motion is alternately posi- timing error among components would result in a linear
tive and negative in adjacent frequency bands but is never drift in the relative phase angles, similar to that shown in
more than partially elliptical. The angle between vertical Figure 3f. There are no poles or zeroes in the instrument
and horizontal motion, which can be interpreted in this response over the frequency region shown. A perturba-

F(alt . 2024 / (b) o f
o ) 2 0I

150 - 08

E 0 0 0
o 0 10 20 30 0 10 20 32

(c) 200 W 200
100 1 100 -

0 0- 0
-~100 -100

-200 -200
0 1 0 20 .30 0 0 ?, 3:

0 10 20 30 0 10 20 30

(e)u~z BOZ -~c,,c M 80 -

Fig 6 Amplude spectra and polarization angles for precursory waveform observed at Station FRD) Solid/dashed
line cnn, entions are identical to those of Figure 3. m 40mm -m mm m m mmlm m m m m m
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Fig. 7. Amplitude spectra and polarization angles for precursory waelorm obsered at station CRY Solid/dashed
line conentions are identical to those of Figure 3.

tion in the response filter characteristics would have an increase in scattered energy. The most prominent

difficulty mimicking the apparent boundaries between features in the spectra of the principal polarization corn-

spectral processes. Moreoier. we show below that the ponents are the spectral peaks near 5 and 14 Hz. Com-

relative polarization shift from frequency band to fre- parison of the values of (-, in the time windows indicates

quenc, band aries greatly within the P coda. This argues that there is a boundary between two distinct spectral

for a signal-generated effect rather than an instrument processes at 7-7.5 Hz. The 7--14 Hz process is character-
effect. This behavior may reflect the modal structure of ized by dominantly rectilinear horizontal motion and stee-

an intercrustal head wave in a stratified crust. Another ply vertical particle motion. The relative phase angles ,11
interpretation is in terms of resonant vibrational modes in and (hlf for the lower-frequency process exhibit more
the earth structure near the receiver. Structure of scale variability. Within a 2-s time window the horizontal

lengths 100-200 m could account for the higher- azimuth varies only slightly within the 0--7 Hz frequency

frequency resonances observed in Figures 6 and 7. band, with more shallow vertical angles. Figure 12e shows
We performed experiments to see if such resonant that t-) 60' in this frequency band, which may indicate

behavior could be found in the P codas for this event. SV-converted motion. Particle motion at frequencies
When the entire coda was used for polarization analysis. greater than 15 Hz bears little relation to the higher-

the results were poor. The three-component seismogram amplitude low-frequency signal and often cannot be inter-
recorded at station KNW is shown in Figure 8. Figure 9 preted in terms of P-. SV- or SH-polarized motion travel-

presents polarization data from the 14-s P wave coda. ing directly from source to receiver.
There appear to be competing signals at nearby frequen-
cies, creating either rapid variations in the polarization,
vhich are difficult to interpret, or else large uncertainties Staion K\i,

in the polarization. Likewise, the presence of both SV'- 50

.ind SH-polarized energy in the S arrivals made the 0 :.RT

identification of a "'principal" polarization uncertain.
We chose, therefore, to analyze the P codas of' these 5000

records in successive 2-s (500 sample) segments. We 10000
observed what appear to be resonances over 4-6 Hz fre-
quency bands and variations in polarization over time that I ,

suggest the arrival of P energy which has been scattered o.2,00 , , .'
within the crust. The results of a polarization analysis of

the first, fourth, and sixth 2-s time segments of the P 4 6 h io 12 ii ii ii -t i Ct( 5eC)

wave coda recorded at station KNW are shown in Figures Fig 8 Three-component seismogram for Superstition Mountain
10- 12 The growth of the "noise" singular values d 2 and event observed at Anza station KNW The 14-s segment chosen

d as the time window moves through the coda suggests for polarization analysis is within the dashed lines
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Fig 9 Amplitude spectra and polarization angles for the 14-, P coda gment sho n in Figure 8 Solid/dashed line
comentions are identical to those of Figure 3

The similar frequency dependences of -)1 and -) in 10- 12. The azimuth of the epicenter has -)1 -92' (i.e..
these 2-s time windows contrasts with the absence of a clockwise) from the second component. The horizontal
clear pattern in the larger time analysis shown in Figure 9. azimuth ()1 of particle motion is, for 7.5 Hlz
Similar effects are found when records from the other < .f < 14 Hz. always oriented more to the south, with
three stations for this event are analyzed. This is not values that vary among time windows by 40' or more. At
surprising when one notes the large variation of polariza- J' ( 7 Hz. several of the time windows tested %ere con-
lion among the three time windows shown in Figures sistent with -92' relative azimuth, but the fourth and

1 , 0 o (b)," ,

uo 3- - >

V 100 2 - ' 0 4,_ ,___ ""_

0 0 - c C0.

0 0 10 20 30 0 10 20 "

(c) 200 3 (d) 230
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Fig. 10 Amplitude spectra and polarizaton angles for the firs 2 s of the 14-s P coda segment sho,,n in Figure 8
Solid/dashed line conventions are identical to those of Figure 3
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Fig. I. Amplitude spectra and polarization angles lor the ses.enth and eighth seconds of the 14-s P coda segment
shown in Figure 8. Solid/daNhed line conentions are identical to those of Figure 3.

sixth segments, shown in Figures I I and 12, show particle Orciat [19851 have showAn that the extended P, wave train
motton whose horizontal orientation is nearly pure east- observed in ocean bot.om seismic data can be modeled by
west We take this variation as evidence for the arrival of reverberations in the oceanic sediment layer and overlying
scattered off-azimuth P energy. water column, buttressing their comparison by demon-

A detailed interpretation of these results is beyond the strating a simple pattern of spectral peaks corresponding to
scope of this paper, but we can draw parallels with recent leaky vibrational modes. Bard and Bouchon [19851 have
studies of high frequency seismic spectra. Sereno and shown spectra from seismic events for which the retrieval

C

C ~ K : 'C , . * C ' _ _ _ 2__ _.-__ _3, >

Ic) -,e 230Z F e . e y ( /

4

7 02

2 0
(C) (d)

r 3.) 0 1Q 0 1

Fg 12 mpitude spe'ctra and lolartzatii angles l'or the elevenh and twelfth seconds of the 14-s P oda sgment

shown in Fiure 8l Solddashed ne cinventons are identical to tose of" Figure 3.
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of simple source parameters like corner frequency and can be estimated from the singular value decomposition
high-frequency roll-off is contaminated by a high- used to obtain i (appendix).
frequency resonance which they model as a reverberation The variability of the spectra and polarization over
in the low-velocity surface layer. The apparent polariza- 0 < f < 30 Hz suggest that the P coda observations can
tion resonances observed in the P wave codas of the Sep- be separated into several distinct varieties of seismic
tember 1982 Superstition Mountain event probably argue motions, each occupying a separate frequency band. This
for an even more complex structure than was postulated behavior suggests that in some cases it may be more
in these studies. appropriate to model the P wave coda as a set of resonant

The interpretation of the coda using resonance models modes caused by near-receiver structure rather than a
may offer a more direct method for characterizing near- number of randomly scattered compressional pulses. Evi-
receiver structure than time-domain models of scattered dence for scattered energy is not lacking, however, as the
waves [e.g., Sato, 1984]. If the resonances of the struc- principal polarization accounts for a smaller proportion of
ture beneath one's receivers are known, we can hope to the total seismic energy late in the P coda, accounting for
determine better the spectral shape of the original seismic only 60--65% in some frequency bands. We also observe
source. If we model the response R(f,i) of the crustal that the apparent P wave arrival azimuth can vary by up
structure local to a receiver to waves traveling in the to 500, both between adjacent frequency bands and in
lithospheric wave guide with frequency' f and polarization adjacent time windows. Both rectilinear and elliptically
i. 'we expect observed three-component amplitude spectra polarized signals are found, often coexisting in the same
tf'/ ) to be found by integrating time window in adjacent frequency bands. We find that

L'(f) f R (f-4), (1 J)df) (13) the apparent modal structure of the signal polarization
breaks down if the length of the time window is much
greater than 2 s, suggesting incoherent excitation by direct

where s(I ,1) is the amplitude of the impinging signal. and scattered seismic waves.
We integrate i over the lower half of the unit sphere in We are currently investigating the polarization behavior

order to account for energy arriving from all vertical of the data recorded at each site in the Anza array. We
azimuths and out of plane scattering. In the example of want to use the polarization information to obtain better
Sereno and Orcuti [1985]. R(/ .J) was calculated for a sim- estimates of the seismic source spectrum. Such an
pie layered model. For arrays (such as Anza) positioned endeavor requres that one be able to identify the factors
atop a heterogeneous medium, constraints on R (.) can causing the apparent jumps in polarization, both as a func-
be found empirically using a number of events at different tion of frequency and time.
azimuths Determination of R(I . ) may be helpful in
evaluating the earthquake hazards of a potential building APPLNDti
site. especiall% as polarization analysis specifies both FORMAL UNCLRTAINTY OF POLARI/ATION ESTIMATES
seismic amplitude and particle motion at the recording We estimate the uncertainties in the angles-), ,
site. More research is necessary to determine if such a
project is feasible. The above examples suggest that 6,,1, 611 from uncertainties 8i (f) in the unit eigenvector
s (fi) varies significantly within the coda, complicating i (f), which represents the principal polarization of particle
the determination of the near-receiver resonant structure. motion at frequency f. The derivation of the rms expec-

tation of ,hi can be found in the work by ParA and Chave
5. CoNCtsOs [1984]. We only define the problem and state the results

here. The vector i=i . the right eigenvector of M
We have devised a multitaper algorithm to determine (defined in (3)) associated with largest singular value d,.

the polarization of particle motion as a function of fre- The uncertainty ,r is estimated from the two smaller
quency and applied it to data recorded on the Anza singular values
Seismic Telemetered Array (Berger et al., 1984] We form
a matrix of eigenspectra of three-component records and A' (d. -d ) 2 (Al)
perform a singular value decomposition to estimate the K--I
complex-valued unit vector i whose components specify where K is the number of -igenspectra used in forming A.
the sense of particle motion in the plane defined by the The covariance matrix for the first-order uncertaint% Si
two real vectors Reli) and Imd). We manipulate the has expectation value
components of i in order to specify four angles. The
angle 6 im represents the relative phase between the com r' , (,the~ ,5iX (a;)". @ ()* A2)
ponents of horizontal motion. The angle 6'111 - 0* or h-i ) '- ,AD
± 1800 if the particle motion is rectilinear in the horizontal
plane, and d, --90' if the motion is elliptical and It is also true that hi X bi = 0. The X symbol denotes
oriented along the component axes. The phase angle d,, the tensor (outer) product of two vectors. Since
is the relative phase between horizontal and vertical hi (hi),, = , h-
motion. The apparent azimuth (-)W is defined by the max-
imum displacement of the horizontal projection of the par- we have complete information on the formal uncertainties
tide motion ellipse. It is measured in the counterclock- of the components of the principal polarization. Note that
wise direction from the first horizontal component. since (Wi)*.i = 0 asi is a vector of unit length, ,i is tom-
Finally. an angle of incidence (4' of the particle motion is posed of i, and i., the right eigenvectors associated with
estimated. The uncertainties in these polarization angles the "noise" singular values d2, d3.



12.674 P\RK I I i 171Qi [5(N Di 'isim m Pot \RI/\ii 
, 
A',, \\i )sis
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Sumnmary. WNe present a new mnethod fur est intat oig thle frequencies of the
fa ith', tree osciilatiiins. This tithod is anl extension of die techniques of

I hlttstsfl ( I WNS ) or Iiliding thle 1iarittitnic cilittpktets of' a little series.
Opitia taper,' o ttii in The spectral leakage of decaying sitsoids

itiritiersed ini st line riolcie ate deived Miultipiying the data by the best K
tape: reate ' KlIttle serie,. A decax inc sinusoid inodel is fit to thle K ltme

stfl IC'. ts1 !a i' 'qwiles priscedutle A. statistical F-test is performed to test thle
tit Wt 'ire tleca\I r1il iiioid Itiodel. .and thuis deter ttirie rite priibabdirv% that
hiere are coje0iell ''c:iitlriisirl rite dla tile I''test iN perfiried at a ntumber
(1 Al'erl lequienie' pri)ducitte a Irleasure of tile certainty th1at there ts a

de-1 ix1 inc s 1iiiiid at e1ach tlctJluCIIc\ . %., otlpIle tirs Irtetitid witit thle :onl-

setitiiriat tecAliriqie t'tillOk'it a dli~ciefe I oine tritslltirrr alacissitte-tapeted
trte~ei~ ile ttl~il)irlrrpae ttteriiid k 1it011d tor be a itre setisilive detector

I e ,ix Inv Nit11is0ld, it) a tiEc sel Ccicit:otanntinated by, w\hite ntiise.

Key A~ords rtrrpt-i~st'r. lit crhaits cet iirici

I introduction

I lt' tlt'' ilsiihhatiil1 Ot tire Iil llh ippeil Ji dcas org slrilisilds in rite erd i tsrtrt
illt ile Jaahbe km fe. reqllrc elit..1 s ftltelnmiti l Icploiiinrent tit Acceietinteters.
Iwiiee rceeied to a, IDA. 'irid DosIligirah Seistiric \ersork. liralter relerted ito as

(.i)N I Actessel a. In. Iied IltitPrer 'ot & )rsini I tiN< Ifrormiatiiin abou trite
'trii'tltt' it tIit f'I'ti l ie nt'l~ id troth l ilt' rdit~e.teca\ ratle' Lttd atiplituhe' of

( itCt'rrr1riiht . IItC' hitilaL'T)ili1 "t tilt'eta rid.g sIlitiisit are estraed tririr a direct
speTttAh estiiiiete oftile d~aa' usllIn a )m ci i'iper dirtisi, 1971% fDairerr ti)Nj litdberg l'lSlsl.
Icr Is, prrcliultrg 'pttt'r iI firririNs'/ir uirs c)I tile dirct spectral esltimates tmade
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froin each station's record ('stacking' or 'stripping' (Gilbert & Dziewonsk I 975). [here are
several difficulties with using a single cosine-taper in the harmonic analysis of free oscillai,ns
The time series analysed in free oscillation studies are non-stationary tlie) are also cont nri-
nated with noise. The cosine taper is synimetric and appropriate for stationary iie-serieN: it

is not a good taper foir ininnizing the spectral leakage of decaying sinusoids irnilered in
noise. The cosine taper also discards much of the data at the ends of tile time series. parti-
cularly at the beginning where the signal-to-noise ratios of tire free oscillation records are
large. This is not desirable. In addition. applying a cosine taper to reduce spectral leakage is

purchased with greatly increased variance (eg. figs 7 and 8 of Dahlen N892). Use of the
cosine taper roughly doubles tile variance, or equivalently, halves statistical eticienc of- tie
estimate (Jones 1902 1. Another drawback of a cosine-taper direct spectral estimate is that it
does not discriminate between oscillations of constant phase arid frequenc) 1harmnnic
oscillations) and broad distributions of spectral energy caused by other processes.

To overcome these problems, we have developed a method of harmonic analysis for
decaying sinusoids inmnersed in stationari ,,hite noise based on the methods developed by

Thomson I Q8 2) A set of several 'optimal' tapers is created, each one designed to miniue
the spectral leakage of decaying sinusoids immersed in white noise, while maintaining a large
value for tile ratio of tapered signal energy to tapered noise energy. Multiplying tile data by
each taper in turn creates several tine series. Taking tie discrete Fourier transfornm of these
titie series \ields several complex eigenspectra (called eigencoefficients by Thomson I 'i82 ).
A decaying sinusoid model is fit by a least-squares procedure to these complex eigenspectra.
The least-squares procedure produces an estimate of the initial amplitude of any decaying
sinusoids in the data. The fit of tile decaying sinusoid model at any given frequency is tested
using a statistical F-test. This gives a quantitative measure of the confidence that a phase-
coherent decaying sinusoid is present in the data at any given frequency.

The nultiple-taper method utilizes more ot tile data than the cosine-taper direct spectral
estimate, and. as shown in Section 4 and tile appendix, is a more sensitive detector of free
oscillations in a seismic record. In one example. the five singlers of ,52 could be detected in a
single record of the )77 Sumbawa event, with measured frequencies in good agreement
with those reported bv Buland. Berger & Gilbert ( 1979), who used a six-station global aray
stack. Only two of tie singlet lines are visible in tile conventional direct spectral estiriate
employing a cosine taper.

The iruitiple-taper technique for free-oscillation analysis is described in the following
sections. Section 2 introduces the furictionals which are optimized to yield a fainily of
spectral leakage-suppressing eigentapers appropriate for art oscillation with a given attenua-
lion rate. Functiotals Cor decaying sinusoids tin time series with and without white noise are
discussed. Section 3 introdtices the statistical F-test for detection of decaying sinusoids. In
Section 4 we present a rumtrber of frequency ireasurements, of isolated tree oscillations using
IDA network data. Our conclusion, are sunmarized in Section 5. An error analysis kit the
nCthird is included in the appendix. Readeis interested prinarily in tile examples are
directed to Section 4. To implement the technique on a computer tie needs it) solve 12. 10)
to design tile tapers. apply 13.15 to estimate the decaying sinusoid amplitudes as a funct tort
of frequency. and compute (3.28I to produce an F-test plot to test tor the existence of
decaying sinusoids at any given frequency.

2 Optimal data tapers for decaying signals

In this section we adapt the methods described tii a series of five papers by Slepian. Landau
and Pollak {Slepian & Pollak 1901 L Landau & Pollak 1961, I9 12 Slepian 1%4, N871. Their
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work involved a set of time-limited functions whose spectral erierg is iiptiniallN oi ncen-
trated within a given frequency band. These funclktions,. have been emiplos ed to design optimia
tapers for the analysis of stationary processes (Thomson I1982 . We have extended Thin son's
work to produce tapers for thle harmonic analysis oit exponentiall\ decaying signals. [:(it
signals that decay exponentially with tlime, we obtain an optiization equation front wich
one can) find thle data taper w,, with optimal resistantce to spectral leakage troil out side a
frequen cy band of chosen wi d thI. So lvinig thle optimiza tin equation. oile discovers th at thle re
exists aI family of data tapers {w01 t ). Iv mt. . ....... I with good spect ral leakage
resistance. We refer to thle members of tIs taniil% as eigentaperv iese tapers are eigen-
vectorN of a Toepli tz martrix whose elements Lire %,aluies taken byr thle fution sin X X. In thle
next section vwe produce se~eral spectria from a single rec:ord itultiplied h\ each ot the
eigentapers in turn, and w~e shmk limmsm thlese spec:ta can he combhined to pri iside usefuli
infto rmat ion.I

.An inipoltanti tactor in thle atalysNis ol lmxitrequenc\ seismic, data i, the piesettce of
.Statiotiar's whlite noise in thle records. I hits was tecoginied b% Daien I I 'sx I:ilte presence ot
stationtarys noise detei itiied tile iptimil timle-series length for estiIoatmsnII of Par ailtetets III
Dahlen's anal\N is. In his "~ork. hiowkeiei . the taper shapes were held fixjed. In 1111 si rd\&'~C
extend the methods of 1ltomsonl (1'tN' iii dci ise optimlal taper shapesto Wilart letigihi l ittl
series, characterized by a pamietei depeniding onl the sigttalto-noise ratio at thle start ot tile
sellimic record. These nos-onztttapers iase less resistance III spe, t a) leakage thbit

those desigtted usting a procedure thwt ignores startoiary noise III thle appendi\ \ke shok% ho"s
ntinse-cognizatit tapers imiprove the sensitivit of thle eigelntapei ~lvi if sIartoitaix ntoise Is
present in tile data.

2A tDECAYING SIGNAL MtttiNO N1t,1c

(onsidet firST a signal .v I) that conisists of a sum of' decas tug sinusoid, tmicmiied hy noise.

Then one can- represent

wAhere pa, is tile complex amplitude (It tile /1lt decays ItiL siTitsoid. s% itch 11,s atiglarI trefieIICsI:
wand decay rate rat. InI praciIce. onie cannot mneasure xv m. blit rmnk' lie A di,,I i e imbner s

x It0) . x U 1). v xI(,% -I I. Asitie that t,, = 0. aind thle t inte hems eeti samples -%I= t, [1 1*1i

a cotnstanlt. which we scale to be uitt, If' -it =I . then tle \%quist I iequeitcx !/ qusiI

and tile angular frequ.-ncy w~ = 'ij is, defined on its priticipal domtain I -,7. rri Tapering the
ini sris xIt)}~J~ cnsstsofmot plIN1ig it b's a real s altied sequetic:e e I N o 1s r thle

taper). Traking the discrete Fourier transform of' tile tapered signal .Yvt N It IIA ields,
4 tihe function

W)c~I exp I i tWO v Ixt XLM_.' I

This sum may be quickly cotnputed using the Fast Fourier [ransmi Ill-i) algorim
(noley & Tukey 1965:1Brighamn 19741. A t radittontal estimnate ofltIe etergv content of .v t)

as a function of' frequetncy is given by ", ~) here (loW.t )vol is a conventional taper

poplartapr.,). he inie lngt oftil tie srie maes bocartaper Implicit if w Mt) E
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in (2.1) One wishes to choose ( wr}. to facilitate determination of the frequency
con tent of x (t).

The primary purpose of' a data taper is to minimize spectral leakage. That is. thle spectral
component of a tapered signal at frequency Co should have minimal energy contribution
from outside the interval (w. - Q2. c) +s Q2). where 0 < 2Q2 < 2Tr is a chosen bandwidth. One
must also prevent the energy at 6) from the leaking out to affect parts of the spectrum at
other frequencies. Suppose that x(r) consists of only one decaying sinusoid in (ca) - Q,

Qfb with frew.ucicy "). The tapered signal fw(t),1 exp(ik;M at))}N - should have as
much of its energy as possiole in (u.) -- 2. Cj + Q2) relative to its total energy. which covers
tlte entire band (-ii, n). One chooses a taper {w(t)} N -I to maximize thle functional

fw+12I Y(w) Fdw(.2

i7?

7I (W 12 dw

where Y (w) is the discrete Fourier transform of Ix M(t, w 't -01

A'- I
v (W) = pu I exp -- iwt) exp (iw't) w W exp ( -at)

n=O

(Slepian 1 983 describes how maxirnizing a similar functional yields solutions to the concen-
tration problem. which is important in electrical engineering.)I Since our time signal is limited
to 10.- 11. there is no way to confine completely the energy of its frequency transform

s~0.0

75o Jc)- Z .+ ark. Thrfr. Linde aue f.i. alwayson estnuiy

and u e spa theo to numeepndthe deoto r of (2.2)

S= 0

somtap(.1beoodpnent efatpeeinatifrequy w0) shul ha).e (Nindsiplerg ucrbtion

At -2( Im) IsllM
21Mm Yxp Erlin) It,rn0.x I.N - -ep Isw 23

from ~ ~ ~ r otieheitrai , ., +- ).wee0<2 <2 Is t)hsn adidh n

anid the agonal tre ere t expand m the lemboingou

d w ( 2,w ) f12u~c = .T h Ip2E w t)ped sina wt) vt)epio-~'x t=nsol aea

s th e 2n) ecmer delt fu. nctirose on itper w( if a bi and rise. thee function.

can ywritten a

f (Ia2.2)

6,whee wo) i kth deta Fourier tfo if = bw ith i Tebi:

w -
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To find the taper that optimizes the functional 1' set the variation otj 'with respect to w
equal to zero

d
5f(w-.IN =-f(w +ch) 0

de L~O=

for all N-vectors h (Goldstein 1980. chapter 2-, Smith 1974). Some algebra leads to thle
eigenvalue problemn

A - w - XB -w = 0. (2.6)

where A, B are N' x N real symmetric matrices and the eigenvalue

X =f(w).

The eigenvalue X is always less than unity, as can be seen from (2.2). The fractional
spectral leakage of the signal ait C ) outside the frequency band (6w S2. co + E2) is I X. Thle
taper wo = I wo(0 I, w I )..I. wo(N I )I corresponding to the largest eigenvalue X0 is thle
optimal taper for mtinimi/img spectral leakage. The taper w~, has roughly thle sante shape as
other popular tapers such as the [lann and Blackmian-Hiarris tapers. (The taper w() corres-
ponds to the solid curse labelled V0 in Figs I and 2.) The largest eigenvalue N0 is almost 1:
one finds that N- 1 I 29 x 10-'0) for NQ2 = S. IMoreover. there are several cigenvalues inI
the descenditng family N0  X, > X, > . . . X.,, - Ithat are very close to X,) and hence close to
unity. The associated eigenvectors wW,, W -.... W....- 1form a sequence of 'eigen tapers',
thie first few of which possess good spectral leakage resistance.

Let the decay rate a =0 in ( '.(, 1. noting that A and B depend on a. Then ( 2.6) becomes
equation (>)of Thomson ( 98 r): I: ts solutions are optimal tapers for concentrating the
energy of nondecaying sinusoi,0ds. As discussed by Slc pian ( 11)78) and Thomson (1982). the

4n -pro c~e tc-pers: cn=O

2.0

0.5 - 2

0.0 - r/

-0.5- 3

1.0,I

-1.5 I

0.0 0.2 0.4 0.6 0.8 1.0
scaled time

Figure i. [he the to%%est-order eigentaper solutions ito i',6) miten decay rate C,= 0, and AS2 87Sn. The
solid Ntack line is the optimal taper. lligher order tapers a succcssively more oscilt-tory.
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solutions to (2.6) when a =0 are the discrete iV/ Wir prolate spheroidal sequences
W~)N~ )} N -- . where W= Q27rand kisan integer. If a :0. the solutions tol(2.W)are thle

eigentapers w t) M- v(k) (N i a 270 exp (at): t 0, .I .. N 1. A spectral estimiate using
these tapers is siilar to the 'analytic continuation' of the DFT discussed if) Iuland &
Gilbert (19)78). In much of the following. the timie-bandwidth product P = NV W = M2 27 = 4.
(in Slepian 1978. 1983. the paramieter c = T P is used.) P is usually taken to be anl integer.
but this convention is not required.

The (Vk) (N IV) _'% sequences have several properties that are sltared with thle
decaying-signal eigentapers (Wk (t)) N - . For example. botht possess an orthogonality
property:

I t~N Wvk(N. WV)= exp( 2 a t) iv,,(t)wk(t)= kk .(2.7)f

The tapers {Wkt) iA -t". sample that part of the signal that decays as exp ( - t) mi an ortho-
gonial mnannler. Figure I shows the five lowest-order eigentapers "'k U) = 0 (k')(,V W= W)
t= 0. 1 .... N - I for a stationary signtal (a =0). The zeroth-order taper {w 0o(t) -t= 0 is a 41T

prolate taper. Note that the higher-order eigentapers are negative fin some places and they
weight the data miore heavily near the ends of' the record. Figure 2 shows eigentapers for a
signal that decays by exp ( 7TO). wheie 0=aT/7r= 1.0 Q-cycles. during the record length
T = AA. l0ne Q-cycle refers to the timne required for Q oscillations of' the harmonic signal.
This notation was introduced by Dahlen ( 1982). One Q-cycle is equivalent to an atilphtude
decay of exp ( 7r) ,I 23J1, Note the increasing amplitude towards the end of the record, as
thle tapers try to amiplify thle decaying signal. The tapers {Wk (i) >'V- produce thle

Ceccy -Cq s *.Sold tapers O-1(N=87T

25

20 ---

15-

10 4

5 -

-10

0.0 0.2 0.4 0.6 0.8 1.0

scaled time
Figure 2. The tive tos\cest-ordc-r eigentapers for a dylj% me sinusoid that clecda s b C\p I 7 during the
record. Muttiplying a decaytng sinusoid b these tapers will concentrate its energy in a frequencs band of'
width 211 = lior/A. Ithe taper amplitudes increase exponentiatb to%%ards the end of the record to
compensate foir the signal's decay.
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unwelcome result of amplifying the late record noise as well, so that while the ;ignal power

remains constant with time in the tapered record, the noise power increases exponentially.
In the next subsection we will show hlow noise-cognizant eigentapers weight the later data
more soberly.

Subtittin {vk(.Wep 0t}a for I~~k rzo*' in I' SIand using thle definition
of X,. one can show that the discrete prolate spheroidal sequences and thle sequences

(Wk (tW r=_ have the same eigenvalues Xk for any value of the decay rate a Thereforre, thle
kth prolate taper and the kth decaying sinusoid eigentaper have the same fractional seta
leakage for a given value of P = Q2N/21r. The 2NW lowest-order eigenvalues Xk of ( i re of
order unity. and rapidly drop off thereafter (Slepian 1 983). For example. 4tr-prolate sequence,
have eight order-unity eigenvalues. one per Rayleigh frequency spacing (~ 'r X in thle central
region (6) - 8ir/N. 6), + 87r/AN). Values Of )1k are given in) Table I t'or somte examnples of PIT
prolate tapers.

Thle amplitudes of the frequency transforms

N -I

of the f'ive low\est-order 47r prolate eigentapers are shown in Fig. .3 05cr a Aide range of

trequciesJC1. I Here, record length T =N.) Substituting { i,I k I . kI exp lot II "- for

IAt (I . in t2.8), one finds that thle functions Pk (wj are idependen t of decay rate.
Figure I shows the excellent leakage rejection properties of the eigentapers. There is a sharp
band-edge at frequency (, Si/T Note sidelobe height increases a,, the order of tile
taper increases. but remains 3O -40dB below the height of tie central region even for tile
fifth taper. Figure 4 is anr expansion of the central peak region displaying both real and
imajginary comlpone:,ts of thle same five eigentaper t ransformrs 'AII.The plots of thle
central region show, that each WA. I wI samples, thre centrial band ( Q,1~2 in a different
manner. The cigentaper transforms l14'k iwt become increasingly miore oscillatory with
increasing order. The WA1)are orthogonal, both wtlin the central band

XAWA w -w.= k6k (2>)

Table 1. 1 t- envalues Ak tor 1,o%% et-rdr PnI prolate Tdipers

P k It-A, P k ItAk

1 0 0.t89 3 0 1.348 x 10'
1 0-2504 1 9.245 x 10'6

2 0.7W6 2 3.850 x t0
3 5.086 x 10-'
4 5.386 x 10-'

2 0 5.725 x 10-' 4 0 2.946 10-'o
1 2.438 x 10-1 1 2.768 x 10"'
2 4.061 x 10- 2 1.2 10x 10-6

3 0.2783 3 4.245 x 10-'
4 0.7253 4 5.899> tO"0-

5 7.496 x 10-'
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Figure 3. 1r-requency-transform amplitudes of tile f'i~e lox~e~l-oder 47r11 rqdctlccntapvi',, Ih trequenly
trarnsorm, are independent of deia rate b.N (- 2 . 1[le 'Idlt e , awt. I'm.>i !"t tile',pllo tl¢lalr
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1o\, trequlefl,..' NCI1111. dit3 ,lie 11011 , InaII tile l t sec' tionl. l.peiN designetd it, anl Nc, no)l,\

fectrd,, at~e disOIU ed

'B D-I I'LA¥N(, SlwN-L. IN %\'ll1fil| Noll,[

Lov -leqtie ic ,llll ec()id, 1,111 be nit0dolil ,iS c '1ll 0i1 dek- i\tIng 1IiC O'C, 11 101i1t/
Immllerse t. ie

.'(l)= 1" , exp ln Omt ltlti. t , I . 1"i

wheore. betueo-r . a and pliade ofe the qult .decry rate and cmpli amprtude of

trie il r re cll ton. o deay rat o t (). alIr isle f,a lhe/all' to ll tir a ll's rsl ceN l s

sun over einegd I priniple oer the cot abiilite els i grt i stitnlsrI sere oscilla-

tions dut le an he taken ap finiee iat re rd fronte acyd-linived seismic in llunit like \Nill
assuge throughut that l. ia , n reaiztire of islt)l /ero-ie ealt s "so lis e nise prces
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zerot order toper first order taper

- .6 6 .

4 4I

2 2-

4 4 -2 2 - 4

t r- r rl r ?j e

6

4 4

__

Figure 4. F" \pan'ion of central peak region of the five eigentaper frequency tranforrnt of I -ig. 3. The solid
line is the real part. he dotted line is the imaginary part. The central peak region is increasingly more
',,illatory tor higher-order eigcntaper,.

In practice, the spectrum of seismic noise does not va y much over the
frequency hand of interest (Agnew & Berger I978).

We determine optimal data tapers in this case using an extension of the variational fornia-
ism described above. In particular. we wish to halance the need to concentrate as
much of the spectral energy of the signal as possible into a region of bandwidth 2 .1 against
the desire to retain a high ratio of tapered signal power to tapered noise power. The
exponential asymmetr) ot the decaying signal tapers {A1 'k (l0 -01 will increase the
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amplitude of stationar) noi se in the later part of the record. This will degrade fihe quality of

thle spectral estimate considerably unless the ratio of tapered signal to tapered noise is,
constrained to have a reasonable value.

Asstume that in the interval 1 6) SL. o + Q I the record x IM is comaposed of the signal. a
single decaying sinusoid, plus white noise 11tM:

x t )I =Pexpliw t -- at) + i(n). 1.2

Suppose also that we have discrete samples of x (t I

x(WL . r = 0. 1 .2. ..

so that the angular frequency wE( i. fl~ . We \Aati to choose our tapel wt,)t o> so that
the energvy oft the tapered signal

?'%,ltlg e\p (ikt - aox\ 0 13)

In w Q. w + Q2) ielitise to its total enlergy Is riiaxinu7Ied. butl noW Wilit a colstiaiflll thre
ratio of the tapered Nignal powver to tapered nloise pote cII in + SD1 ~ ha,' a ti\ed \ aloe

The discrete 4-oriier transformi of file tapered noise is-

A I
m (L,) n~ 1 )) exp ( iW1 twln 12.-14)

A* measue ot the expected energ\a of the taper ed nioise at frequenc:\ W is

XA I

(AI n (W) F) dw = Q2 ' (wt). (2.10)

We generaliue I2)in order to cotntraini the ratio oit tapered signal to tapered itoise
Withinile frequencY hantd E 2, cor + 12). We now wish to maxinti/e thle funci onal

w-Aw w-A -w

w-B -w w~w

\A ith iespect to w. W here w, A attd B are as defined it) Section -'A. The se:onld termi III
equiat ion 121-Irepresents. the ratio of tapered signal power to1 tapered noise power rj is a
Lagrange mlultiplier. In thle lilm of \or\ large signal-to-noise ratio. i.e.. as 1 p1 2 I I(o- )--
one expectIs 77 to teind to /Cro. In principle tj iscdetertiined from the con,,traint equation: in
practce iWe deterniine Its, %aliie emipiricallr. The conditiiin hf(W; Q. 77) = (0 leads to a non-
linear equation for tite tapers v Which maximie 1211hsnon-linear e.qua1tion can be
solved approximnately' ( Lindberg I11x)50I

Alternatively , we canl nitni,' the functiontal

w -B -w w*W

w -A w +Vw A -w
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Fl holet II plit ate commiunca I on 1 So I ing 8.1= 0 leads t o the equation

A - w= VB'- w,(2 1'ii

w.here B' =B + P'I. I heing thre N V idetti i matrix and

The eigenmectot, \&hich cot espond to thle latrgest eigetiVALICS o(.1 I i ntrtn/e ].
Given thle decaI rate ak arnd thle noise-weighting paramieter v. 2. 19) canl he solved for eigen-

taper,, jvA W: o. V' ) r" 0 When v = W. thle elements of thre kill taper ivA W 0. 0) = ivi it F
t( 0 1. 2. Vt I .and the taper, reduce ito those ot Section 2A. Thc fraction of tapered

signal pttttet that rettitns !n the frequenic\ hand (w SZ. w~ + M2 I.is

(WA * A *W1, WA WA IXA (12.0)

stlicli can he calculated flito the eigertvector, mnd eigetmalues of (2.11) QWe hate found it

helpful it, think of tire XA as, 'bandwidtht retention factors.,

Wke used FISVA(K ISubr-ouMittS (Smnith ci at 1 07o to ,oltc (21 'i tol its largest eigeit-
values V4, attd associated eigenvectors. We tioritali/ed the taper,, ti-1 it .0, so , ,( that

w1, BC\ (w1  VOt +ep 2tt V)W 1 ([.0- V(wk (I.t(' t 2211

-0

Rather thant soke anl etenalue problemn t'OT ever\ data seties letngth. 21 i as solved fol
X = I 2N and tile tapers for othIer values of- N were f-ound usinig sphnte in terpolation. This
appioach takes dvantage oft the a;,\isvnptottc relations het\Aeen the discriete and continuous-
ite tapers described iii Slepian I 'F'S . Tests uising thlese ii etpi iated t apeit sshowked

negligible deviadation of spctlral leakage propelrties relaise ito e\act solutions, fiot A -- f S
Vor V. I (s t2. 'l ii should be solved dilectly (Ak. ( lave, private coliititttcation I. bitt such
slitoi time series are rare itt tree oiscfliori n W( irk flte taper ti is f r ms are cotupt med from
tirte interpolated taper,, uising anl F+1 after padding tile tapers, ith /eroes uintil their lengths
\\ele d power of twit.

I le preceding argument shlows., thdt V 11 a comlplicated tuLttoti oft tle signal-to-noise ratio.
Forl large signal-to-noise-i atios I 1i I- -' w ill be very small. R' s B. and the oilutiwn of'
(2.1 Ill Ii not vesdifferenit front the solutioni of) 2.oj1. For sittialler sga-otieratios. one

epcsthat tire optimal tapers %%ill have a v of finite si/e. Onue could pick anr incorrect %altie
oft V tot a1 pat tictilar siginal-to-ntoise ratioi. brat their the tapers would mit perform iiptiall\.
L' sefti valuies, are best determined b\ experintent - We will slttw Il inlie appenidix~ ttat usin g

eigeniitpers having larger values of' I, resuilts, inl a mlarked iniprosemetit ill the detection
capability oft thre multiple-taper algorithnil.

Some exitiiples of nois.e-cogniz.ant eigentapers are exhihited tn Fig. for lie case I- = 0).(l1,
1.6. and SINV = 81 Note the strong asvmntietr\ of, tile aipers. \'itli a sirtitg emtphasis ott

data in tile earlier sectioni of the record where Instanitanteouts signal-iti-nitise tatiti is greater.
The height ti' the taper's miaint peak increases whitl incteasitig order to competisate for the
deca\ ostile signal.- as, shlt~i in Fig. 2. Figture 0 slot apers, whiich wci e designed st itt
V= 01. 0. =(.r- and S2IN st. The pref ,eretice for t lie car lv part oif thle t eci'td is tmotre drastic .

resulting in significatnt weighting at tile onset of' thle tithe set tes. Here tile \ trIatiotia principle
nlitnit/itig (2.181 has sacrificed resistance to spectral leakage iii order to raise thle ratio oif
tapered signtal to tapered notise. Figure 7 displays, eigentapers designted %wih v z0.001 .

=0-2. and SIN = it. These eigentapers are ttor a series cotttaiiing sinusoids that only dlecay
slightly inl a tmttre flavotiahle- sigital-ro-titise enviruttitent. Asytitnitcal wxeightitig relintains
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noise-cognizant topers: fl=.6 i, .01
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Table 2. [igenvalues xk and bandwidth retention tactors A'k r Ie ox~st order note-
cognizant optimal taper,.

0. 0 1. ,A fl.6 v -0.1,P =0.6 v=O. 1l -0.2_ v-:O.01f - I

k ' ' k ;Lk  A. ." 2

0 0.962301 0.99869 0.73574 0.98905 0.99729 0.99997 0.94592 0.99682

1 0.940787 0.99760 0.63985 0.98003 0.99676 0.99995 0.89435 0.99227

2 0.910363 0.99619 0.53070 0.96888 0.99614 0.99993 0.80953 0.98428

0.867487 0.99361 0.41590 0.95026 0.99542 0.99990 0.68406 0.96699

4 0.808944 0.990(06 0.30618 0.92719 0.99458 0.99975 0.52440 0.93826
5 0.732283 0.98339 0.21152 0.89053 0.98934 0.99469 0.35619 0.88398

Values of the eigenvaluesa L"and the bandwidth retention facteirsA for tume-handwidth product Q.V - br"
and vanous values of the decay paraaeter[I and the noise parameter v Note that the bandwidth retentmn
parameters A- are clCse to I for small k, and are succeedingly smaller for higher order tapers. The lowest

order elgentapers have the smallest fractional leakage I -i .a higher order eigentapers suffer front suces

sLty greater spectral leakage.

evident. Fahle " slows ,alues of ,, alld X t'ot Iaper, {'.A, W . V 01 tti a -.elect oil itf
(3 and v vales. Fie eigenmalues X'. drop rapidly fiomi f t, nlltx it tt ,leasig k. The bandx Idt
lelent li taclors Nk remain lelatielt, colstant ai1otig eigentlapers of ixed 3 aind t'. [his
hehaxiour can be ohered qtalltatielN itt the Fig. s plots otf the ampittudes of the !requetc\

transforms 'k Ow: 3. V) ,tf the tapers t, (/: 3. vt}s._ 0

W 1w4. = t w t: 3. v) e\p 1( T)le \l 1T (2.221
r 0

tot v3 = It. 1 1){1l, and 2,%"= f The fix e lowetl trder eteentapets have idejobes of
comparabie height Htlaraettent, of the cential peak legions ate shtt tt t .ig.

Be a se ..A .Md B' ale ,\ttitttetiic. tite ortlhigotnaltV condittot l .l rettt1,1Atts .ald fto
nttie-,:ogni/ant tapers. / (2'1 I . Ihodxe.er. as the nttle-cogni,att tapels {tt, (i: 13. t}} % 0
satlt" (221 i and iot (2 ). tie trequent -dotiai ottthigtttalit relatttll (2.1)1 doe, not

Fable 3. I le en uT, t mjttti D to: . 6. !1 8, and

k 0 1 2 3 4

0 0.98151 (1.00183 000218 -0.00235 0.00227
I 000183 0.97130 -0.00352 0.(0415 -0.00445
2 0.00218 -0.00352 0.95658 -0.00620 0.00719
3 -4).00235 0.00415 -0.00620 0.93560 -0.01043
4 0.00227 -0.00445 0.00719 -0.01043 0.90638

for/V 0.6, QV=r andv 0.1

k"

k ) I 2 3 4

i 0.86278 0.01271 -001358 0.01261 00995
I -0.01271 0.80917 0,02210 0.(322 002141
2 -0.ol58 002210 174122 0.01 1 (6 0.03440

0.01261 002 122 (.0;364 0.66A34 0 14693
4 (1 (X)9 002141 0.10134 , 0 .04691 0 S231



FHgUre 9. 1 \Paln'tttl th il'C11lrii I'ci leehil ot~ tlit Illic tjtl'till amlittde'tl lilt tiwc hlle'

idet eivcnl pe4 u! i- 8. ilt' -11d line i' tilt reil1 par k't tile trcqlt'MN tlJltttlrttll: tile tda~het lineC i tile

hold Ilt It', plae \\I lae

Io'7') J'"(Wu3.ifL) it'k (co,. Ill = \ 1( 21TO TitjIiIrj3 i' I tjA k( .3. v') D )8
1 0i

i A. A'c l.I K U h liteiail\ I) is diagil\ domninant li lntial t,. I able 3lists
tile' eielttit~ Di1)I tIlle tle lmest irder Clgenttapefs wttl S2.V = 0.0~ li. and v= 0.01
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0 t. 1. [hle Miagnit udo or tire off-diaonal elemients of D indicate Ilie depai I(Ie t ionir

ort litetrnailit' thle treqiiencN tratstoil is Wk' (1w: 0. v) o or ( 7T. rI
We lute required that our data tapers po.,ress certain desirable properines. We \\ani liei

to Irake tile abilit\ to concentrate miost of a decay ing sinustr1,idsN energ\ into a gteit rle-
quoln\ hind. balanrced against thre capacity to iriiritai.. a hrighr signal-tor-nise ratio lor tire
tapered data in tire friequcyc domnain. This. leads to a variational calculus prob-lemn. whlose
solutions Lire a fainill of data t aper:;. These tapers provide a ietliod of rrrtliugtnallt,

ni11pling a decaying sinusoid. in both thle little and frequency dtrniains. B> samiplinig a dlecas -

Ing sinusoid r-epeatedl\ inl different as.otte Cant obtain suAperior estimiates of its, requencl.
aittd a Illp ILid e. Si I1 p le techlIItquce to tio this, based ir thIIose our I lned b\ 1li1ms1r1 SiI I

,tre tire ofbic ile next sect!0ut

3 Harmonic analysis

Anl tiiipr tant pltrit Itriie-peritd seisiic data diralysis is tire detection ofl decaying sirrustrids
inl Ire datat and tire rrreasireittert t lir he:,1tienlcies arid aniplitudes. [hie estimatioin of'
de~a\ rate a is also iipor rant: \%e plait to addiesN this piobleir iii later wotrk. fit tire forlhow-
rite It 1, asirried that thre Q oft tire deca, ite tscillaitirrt is kttrwnt[ or hias been approximated
b\ otit ietiid (e.g. Riedesel t ul, 1 ON0 .

[ lie sp~ectr a of(its -fr,4eqtetrc\ seisric tinie-sertes citriist ol Iharmonriic 'lines, whitcih have
been broadeired b\ deca,. arid Ir )itt inuttuS backgrorun d spect rum. [lie decay -broadened
'lines* ate treated as sietal. %wtoeda lie contrinuoius specti ruin is conisidered to be noise. This
sets tree oscillation data anal'sti apart r runt rtrait fairilthar problem it seismic spectral

estirnation. e.g. finrdinrg the treqjuericv crrrirerrt if btrd) waves, or eart iquakes in tire near
field. lire Spectra in tose cases are predotiitl crrrriirttous. There are methrrds rif multi-
Taper spectrRIt analysts lIA Zire Useful for spectra which doi rno have harnrottic line coi-
ponetrs eep. 1lttipsoln I 'S 2. Park. [.irrdberg& Verrnn. ii press: Lindberg. Vernon & Park,
kill pubh lisied tit u11SCipt i.

I lte miost straightto~rward itretlitid of detecting lire compoinenrts in Itiw-freqienrex data is
to liteasure ib\itirs specrtral peaks il a discrete Firirrer transttiti oft tlie data, If trit tapers
thle lttlre series itt a prudent tasiontrir., indicated ir Daitleti Ii 1,2. this approach is adequadte
ttor well-excited tiscillatitirt geteritted h\ large eartrqttakes (M, <1 7). Untfrrrtitatel\. mrost of

these well-excited ttscllai tiir are fufc-aeeuvlt t Undairtital imoides wich lbs

threitiselves aillow poir depth restilitirtl. I Ire Mtodes Most tiSetrill tr enhtanceing tire restoluttont

at depth ( eg. tite utteitite oscillatitits thrat cuiesprird to PAP. PKIKP, SKS etc. mlit tin) die
excited tonyI b> v~erN latrge ttr \er deep earthlquake source,., -vetr tihen. their spectral peaks
Itiaiv not prrt rudo Substatttiatll above tire backgiutrd nroise '.Vasters & Gilbert I 108 1 shit
a ixpical exaitple of this Proiblemr itt rte presurrred Idenititicationi tof twti iter-cure urscria-
tiri is. I-lie rise of' spherical lirrnortic stacking titf records frtimt a globhal array (Gilbert &
Baickris I9 GIi:(ilhert & D,.iewotski 1 t)75 : FilaiJd. Boere & Gilbert I ,)7()) canl aid triode
rderrlctttrrrI~ greatly. especially itl thle Case o' cltiSely spaced spectral lines cauIsed by
splitting oif a tree tiscillatiorrinmto indiidual sirrelets. Hmoeer, it is difficult tt identify
decaying sirru-strids ii a lotw signial-ut-tIttise etrv1ittttrerit using contvenrtional iretitids tif,

spect ral estimiation
In tire fotihitwrg we prtrptose a ieihird that is desigited ttr yield a quaittitative treasure ot

thle certainty, tiat there is, a deca\ Intg Sintuistid at arty given freqiteite Th-le ittivelty' uf OT'
ahgutitnhrtit resides, tnt thle additiutnal irformatin ttbtaiined by sailiplinig tue data witht linre

than ttrre taper arid tile itirductirtr trf a statistical theory based tilinat F-test tor detect
Itaritititic spectia il) ttnrtttelns anrd reject cointiinous. randin-pitase norise.
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3.1 REG.RESSION ANALYSIS

Suppose that x (M is a record consisting o' nIoise and a nlUnther t decay ing Niiiusoids tine o
which has frequency ( . Then one canl write

where M is a complex amplitude, a is a decak, rate. and e (t is an ci rot tern I lhe eiro Termn

consists of' other decaying sinusoids and noise. Filr a AuticttCIN ',mall aluI Oi £.x k II
contains onythe Single decaving sinusoid gepit a) tii tile 1eLCl\iir

(w 52. w + Q)l. This decaying Sinu Lsoid represents a dete rinist ic sigitil in thie i.i s(
and one canl use thle mlethod of least squares to estimate it' amplitude P.

WAe assumne in thie following thlat there is not itiore thani one decai~ii sirirIoild ini thle
f"requelny interval (kb S) (2. + M2. This is often tlot trule ill practilce. hiul ill iaitv a[pplica-
lions the various singlets of' free o-scillation iniliplets ate ohserved t(o cottibine t1u1k a signal

tiat is %%elI approximtated by, a single resoinanice. Also, tile lea~t-squaics proc~edure- canl he
generalited to tile Case of two or mor,)e decaying sinusod uIls ii a IlequenCv titleJ (ia %ki dtIT
2"2 11homson I ()- ).

As we hiave inidicated. it is important to taper thle data. I'sing tile o)ptniit:ll Tapers, il

Section 2. we multiply the data hy each I apet lkeu.t:3,v2.>o.,,-i.kII . it

tUrn. We pick on ly a small numnber 1K ) of dbiTa tapers because. ttgltei idei TTapers has e
sticcessisely poorer leakage resistanlce. Illtilie '.ase r'I, t ile t3)V ae ip Tot) "Jet A -~ A\ -2 ?r

have good Spectral leakage iesisiance: higee-order tapers exhiit \List!\ plkoleT pclhTittatiCe
(Slepiati 107,S) . This is evidetit from tile behavitour of tle eigetivalues X appeaimie! itl I able I
In thle case v :;- 0. we chtoose thle K noise-cogtri/ait tapers wiltl life tar Cest banitdt I

retention facitois. tisuallx, K < NQS 7r fit~ this caise We Nlios lioa we choiose K itn Sectioni 4

NMult plying thle data jx It)N -0.1 h tlte K eigetapets (,l k 41: i.vli ' )liote ob-tain K
titi srte

{tvkWt.-3. vXlt 01:=O i. K 1 I I.

Frlom equano t iti3.1 I

e (t) vvkt:. il v = x it )twk It: 03. v) piv5 1(ti . v) e\p Itwi a. t i. t . .

(3 2.
Take the discrete Fouriler iratishorut of hothI sides of(.2

w here

1% 1

Yk (W)= IX (t it', 4w V) expl 1WI)
r -o

and 141k (c: 0. v) is definted if) equation 12.22). Because of hie leakage t esistattee o1 le ie apers.
the ek 4 w) are approxttnatel thle complex eigellspectra oit tile noise ill 1w U- S. W + SD)

We wAould like to make ain estimate u d' the amtplitude u (d am dt:Ca bill sitUSOd oitfite

quencv' w. To do this, a least -squaT Cs procedute is perfonied. At each frequent:"cy . thle
complex eigenspect ra .

t
k (w). k 0, 1. K I . are taken ito be the depetident vatiables.
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A is tile parameter to be estimated, and the fVk (( -- : 3 v), k = 0. I. K I, are the
independent variables. By the Gauss Markov theorem, to produce a minimum variance
estimate of a that is unbiased at the decaying smusoid's true frequency using least squares.
the random variables Yk lO. must be statistically uncorrelated (Bickel & Doksum 1977.

ch. 7" Luenberger 1969 , ch. 4: Tukey 1975). However. the Yk(wl) are not necessarily

uncorrelated random variables:

('orv g ( L' ,.lVk(LA)) (.Yk (LO) 'J '( i)) 'Y~k (W)) (.1.,'10 ))*

N - IO2VNo, WkIL:-1)Wt'( .V0. (3.4)

t=O

The sum

.N -

Hkk.= k w 0(t: ,3v) v/,W .v)
Ito

will not vanish unless v = v 0 and k * k'. For . = (. Hkk =kk. Elements of the matrix

H for 0 = 0.6, U2N = 87. and P = 0.01 and v = 0.1 are shown in Table 4,
Since H is symmetric and positive definite, it has a (holesky decomposition. That is.

the~e exists a lower triangular matrix G %vith positive diagonal entries such that

H = GG r  (3 .5)

where the superscript Tdenotes matrix transpose (Golub & VanLoan 1983).
Transform the complex eigenspectra Vk(OW and the independent variables Wk.'U: ., i)

using the matrix G-' as follows:

Vk Wt 0l, V) =(,IT-, 'k "k Wt V, ,

:k = W (G-I)k'kk(W

k (cj =, (G-I')k kX ).(W3.')

Trable 4. Eilcnt, of matrix H tor 03 .6, tN 87r and v' 0.01.

k"

k 0 1 2 3 4

0 1.84870 0.18322 -0.21788 0.23523 -41.22668
1 0.1322 2.86999 0.35164 -0.41490 0.44470
2 -0.2178; 0.35164 4.34203 0.61999 -0.71893

3 0.23523 -0.41490 0.61999 6.44037 1.04331
4 -4).22068 0.44470 0.71893 1.04331 9.362(1

fori 0.6, 1 IN - 8i, and v -0.1

k'

k 0 1 2 3 4

t 1.17223 0.12714 0.13583 -0.12606 -0.09953
l t0.12714 1.90834 -0.22102 0.23223 0.21434
2 0.13583 -. 22102 2.56776 0.33639 0.34401

-0.12600 (.23223 0.33639 3.33664 -0.46931
4 0.09953 0.21434 0.34401 0.46931 4.17692
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where Vk (t. ,  v), Zk (Wj), Vk(w(, . P) anid gk' (0c) are the transformed tapers. tie trans-
formed complex eigenspectra, the transformed independent variables, and the transformed
errors respectively. We employ the Einstein summation convention in (3.6) and hereafter,
summing repeated indices over the range 0, 1 ....K I . From (3.3).

A (Wo)= Zk (C) tVk (W - ): 0- V). (3.7)

The transformed complex eigenspectra Zk (w) are uncorrelated. as

Cov IZk(W)- Z, (W) (zk(w)Z(w)>) (k(Co)) (k'(W))*

= (G
-1 )k

I Coy LVt( W), 1m ((A) (G
- 

)k'n

= 
0 

N6kk' (3.8)

b', (3.4) and ( 3.5).

A measure of the error in assuming that the record x(t) consists of a single decaying
sinusoid of frequency & is

K -I K -1
M = ( w gk())l= = IAk((W) ZVI: (). v) 2 (3.)

k O k=O

Perform a least squares procedure: solve

aM (W)
- 0 (3.10)ajd*

for 1. Then (3.10) becomes

K I

0 = Vk 1 (CJ - &~V) [Z, (W) -- 9 Vk (CJ C( )J 0 (3.1 1
k 0

Note that . is actually a function of the frequency W&

K-I Z 4.)kW

= ____)= -- (3.12)
K -
Y, V ( P',) Zk( J

k=O

One can determine :, (w) at a set of discrete frequencies wfij 0. 1. 2, . J - I, called
bin frequencies, by applying an FFT to the tapered data. The data can be padded with
zeroes to interpolate the spectrum. (Note that this 'interpolation' adds no extra information.)
To estimate the amplitude p of the proposed signal at each discrete bin frequency, set
w = 6) i =0. ...., J-- I in (3.12). Then

K-I

k=O
(c1 / __- (3.13)

K -I7 Iv50 43.)I2

kz0
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Substituting for Zk(W) in (3.13), it is seen that this 'pointwise regression' formula for A is
equivalent to a Fourier transform of the time series {x (t)}N'I with a hybrid taper
{ v( t; , V)} N - given by the formula

K-I

E Vk(0:,) Vk(: .-V)
k=0

w7V(t43, v)--: t= 0..... N I (3.14)
K-I

IXI l Vk(0: , v)I

Vk (0; 0, V) = V.(0; 0. V) since {"k(t' -_o is a real-valued sequence.) Note that
,' (t: 3, v)} -0 is not optimal in the sense ot (2.1'Q.

In terms of the complex eigenspectra and taper frequency transforms:

SI A -E V ; ' (o0 ,(H_ 1),,,>,(,..,)
Pf=0 1=0
)____ - (3.15)

A I K I'y V a " *,, ( W0 , v ) (H - ), ntA ' (() O3 , V )

rn.o 1 0

When = = 0, H = I. and 13.15 t reduces to equatiol (13,5) of Tliomson (1982).
If V 0 (i.e. tapers designed ,ithoUt prmision for stationary background noise) or = 0

(tapers designed for non-decaying signals). l (0: v. 0) = f'k(0 0.3) = 0 for odd k. since in
both ca',es the al reduce to the transforms of discrete prolate spheroidal sequences. In these

instances the points,,se regression technique ignores the odd order tapers completely in
constructing p.

By ( 3.Nt.

AUU

-- UI

K i K i
N N'* , (0 01 H') _1'), m , ( o 0

M 010

The variance of the esttmated amplitude itncreases sm th increasing noise amplitude.
If there is no decaying sinusoid at frequenc wi, one would expect P to be siallHow-

ever, this is not tlle best criterion for deciding if' there is a decaying sinuisoid at frequency wj.

The sinusoid may be present. hut it may have a very small amplitude. Also. the least squares
procedure may yield a large value for pi at some frequency - but a decaying sin~usoid mnay not
be a good way 1to characterize the data at thatI frequency. A method of evaluating the fit of
our decaying sinusoid model to the data is needed.

3.2 TESTING THE FIIT 01- THE M L L To THE DATA

A common technique for assessing the fit of a least-squares estimate is to perform a statistical
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['-test (e g. WorlnKot t & 'Aonnacot t 19 01 ). An F'-statistic is roughly, tire ratio

variance explained by the model
V _ -_ -- . (3. 171

Unexplained variance

Thle random %ariable F follows the F-distribution, which has been tabulated (e.g. Abramiowitz
& Stegun I 051. We use the F-test to compare the fit of thle data to a decaying sinusoid
model.

Suppose that thle record x (t) consists solely, of zero-mean stationary Gaussian white noise
ti(ti). For free oscillation data. we have found that it is a reasonable approximation to say-
lte background noise is Gaussian white noise and almost stationary. This canl he demon-
strated by generating ordered Value plots of thle data. as in Fig. 10 [Wilk & Gnianadesiken

~I Oo)o : ontains details onl ordered value, or P - P plotting of data].
A.s before, one estimates, the complex amplitude pi of a decaying sinusoid of frequency w

by titling the model pu 'I'k w c, 3. ,v) to the random variables

1AW 03.zexp -iWI) II M: k =0, 1 .. K I . 01.18)

There is a finite probability, that a dec:aying SHinusoid model will fit the complex eigenspectra
of thle noise (3.18t at s orne frequency. The chanice that this will happen is a measure of the
ContfidenCe thlat a trite decayintg 'sinusoid exists at that frequency.

When no harmonic signal is presenlt. the expected value of ea. , transformed complex
eigenspectrUtri vaIniWSe

(:A IW,l)) 0. 1.0

However, thre presence of noise, or signal. may cause any given transformed conmplex eigen-
spectriri :A (WI ) to be non-zero at sorte frequencies. This departure of Zk (Wj) from its

expected value riaY be partly 'explained' by the linear regression analysis. Using the estimated
value (L1w!I from (3. 13) . the estimrated vale of zk(wij) is

k (W, = 0 WI)I k ( O4). (3 .2(1

The de\ at ion of zk 1w1 fromt zk1w,) miay be decomposed into an 'explairned' deviation,

V 1 ) Li (Z, 1w1 I)] aridart *unexplained'devia tiort , 1wd 4 z( 1w1 )I1:

I~k (WI) (-,k(WI ))I (:~ (zk. ))I + I~k (WI) k (Wj)II (32

Or. sumnming over k. atid toting that ZOLw1 ))=0

K -I Ki K I

-k (L-)= Z\' 1W1 ) + LZk wj 4 1w)1).
k 0 0 k 0

The sanre equaity holds %khen one takes. tile mo~dulu~s squared of thle deviationls:

KrI KrI K 1
SZk (w)f-> ±lj

2  
Zk (Lw, kw1~ (3.23)

k 0 k 0 k-0

by multiplying (3.2 1 ) by its conmplex conjugate. and th(en sumiming over A. Substitutting for

zk4(Lid.)(3. 2
3 ) becomes

K -I K IK-

I I-k L'-O)l1 I(whia 12 Vk)~ V) I' + I IZkwh (W i(w1 ) V1 0:3L)2 (.4
k 0 k 0 k 0
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or

t( /) = 0 (W/) + i 1Wi), (3.2S i

defining

K-I

k=O

K- I(icos (- I ico) I' Y |i Vk0 0., P) 12

k=O

K -1
Olcol-=  k ( ~ LcOi) (CJiVA(: v 12,

k=O

where wi) is the total sample variance of the Zk(wj). 0 (Wi) is the sample variance explained
by the decaying sinusoid hypothesis. and 0l w1 ) is the residual. or unexplained sample
variance.

We formulate a test to reject the null hypothesis that pu = 0. Consider the randon variable
formed by taking the ratio of the explained sample variance to the unexplained sample

variance. Then

F(w1 ) = wi)

l2Itol 2: I kO3,vt
k =0 ( •-

(3.260)
K-i IK lci -{o I { :17 )t

k=O

If there is a decaying sinusoid at frequency wj. the denominator Q (w)j will be small, and
thus the function F(wf) will be large. By chance. sometimes a decaying sinusoid model will
fit the time series {n t)} --uI reasonably well at some frequency. The probability of this
happening can he calculated. Therefore, one can describe quantitatively the confidence that
there is a true signal at a given frequency.

We need to know how the random variable Ft w1) is related to the F-distribution. In
Lindberg (I 9) iri shown that

- (K 1) 0 (W)
F(w:)1K -)Fw)- - 3.17

follows an F-distribution with 2 and (2K 2) degrees of freedom. Therefore, the chance
that the random variable

K -1 K -1

KI KI (-=l yj0(wofl,,,O: JVl* -,l.r, H')IWI(03i 0,

rmlO l=O
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Figure 10. Ordered salue. of P' P plot ot 075 independent value, ot tile ratio Vw1in (3 .281 using
ssntthetic statrionary Gausiain %%hite noise as input data. The Cuimulative prohabiljt% distribution of the
ornered obstervations Fi . . <- (_,. is plotted on the ordinant against sample quantiles on the
abscisso. lTre Ith point is plotted a, the ordered pair li 651t. FI- )I file graph i~ almost a straight line,
detnonstriting that the ratio h-nwli tollosss ani Vdistributton tor 6aussian %%hite noise input data.

takes on a particuilar vaJlue at Some frequecyIC due 10) random noise can be found using
standard tables of ltre F-distrihution (e.g. Ahranrowitt & Stegun I 965).

Figure 10 is an oirderedl vaitle or P P plot (Wilk & Gnanadesikan 1908 f of 675 indepen-
dent values of' the random variable F(wj1 getnerted from a synthetic record of' Gaussian
wA.hite noise. If the sample lollowved an F-distr ibution exactly, the ordered value plot would
lie on a straight linle connecting ltre points (0. 0) and J I . 11. The departure of the ordered
value plot front a straight diagonal line is nort significant at the Q)5 per cent confidentce level.
using a Kolmiogoro% Smirnntv test for goodness of fit ( Bickel & Doksunt 1977). This demon-
sItrates graphically t hat the rat io Fi w1 follows an T'-distribttiP wh-len the data consist of
Gaus.siatt"witle noise.

4 Data examples

We illustrate thre rtiltiple-laper algorithmn wkith twkoexatrtples of decaN ittgoscillatiotrs itmersed
in while ttoise. In tlte first.- we analyse a svntltet ic I[DA record in which the signal-to-notise
power ratio is known a priori. In the second, we study a 340-hir record of' te 1977 Sunthawa
event from IDA station NNA (Na~la. Peru). Spectral estimates nade by taking the DFT oif
cosinle-tapered data are compared lto results produced by Ithe ttultiple taper techtnique. We
find the mtiltiple-eigerttaper algorithnm is superior for detectittg low-attpliude decaying
sin1usoids in ntoise,

We hrave ftcused our at tent ion ott thre gravest observed seis,,ric free oscillatiott, Ihe
speodlmulliplet nS,- 1 IS, has lower frequency. b ut this oscillation of tlte inner core has

nirt yet beett cotnclusively obser"ved.) The multiplet ().5 consists of five decaying sinusoids
at distinct frequencies. Titese 'singlets' are lahelled by an azimuthal order number
pit C ( 2. 1 . 0. 1 . 2 ). The five singlet frequencies of thtis oscillal ion are widely split by thle
rottation of lire Faith.- so much so that the nmagnitude of the quadratic second-order Cioriolis
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splitting is roughly 6O per cent that of' the quadratic splitting caused by tile Larth's litdio-

static ellipticity (Dahien & Sailor 19i>79). Thle singlet frequencies have been ineasured by
Buland et al. ( 1979)) from spherical harmonic stacks of six I 50-hir IDA records oi the 1977
Sumbawa event. The muitiplet uS2 is difficult to measure as it is excited by only thle very
largest earthquakes. Even for the Sumbawa event. thle signal-to-noise ratio is not large. Also.
sonmc singlets have very small amplitudes at some stations because of thle dependence of'
singlet amplitude on latitude. As a result. rio mnore thtan two or three of thle five singil
resonance functions can be seen in any of the contventional amplitude spectra of records
fronm the seven IDA stations existinig at that time.

We constructed a 300-hr synthetic IDA record from ('MO (College. Alaska) using a source
located iii Oaxaca,. Mexico. The five singlets of (,S,. split by rotation antd ellipticitN- were

included in the seismogram (see Park & Gilbert (1980s) tor att out litne of thle computation

procedure). Gaussian white noise was added to the record wkith amplitude scaled so thiat

2Ic = 2, 73 for the m =0 singlet oscillatioti. NIj 12 a2 22.5 for the ?11 1 singlets.

and N p 12 2% 3.0S for thle in 2 sitnglets. ile record kk ais sampled at I ()O -S intervals to

produce a time series of 6750 points. We analysed thle record a. tlt l'ive eigenrapeis wit

UV= 8i, 0= 0.b. v 0.01 ito produce amplitude esimates 1w) and ait F-te.Nt of the fit of-
pt(uw) to the complex eigenspecira. Five tapers were choemi because the live lowest ordei

eigeniapers with 2N= Sir. 0= On and P= 0.01 have fractional leakage of40.01 or less (Table

'). We also produced a spectral estimate using a cositne taper icr comlpaison. According to
arguments outlined in thle appendix. (F) should be uca r tile Q6) pti cent coritideiie level (or
the mn I litnes aitd cotisiderably greatei fir the moi (I lte [lie "1= 2 hles tax e
(F) - 2.25. but large randomn tILCd1tiioln inl F are possible.

The spectral estimate using a cosine taper I t'v wi j is coi mpared it l tilte multitaper anipli-
tiude estimate lip (w) liii Fig. 1 1. We graph thle frequenicy band 2NO() o ',4011H/ conttaininig
thre five singlets of (,5, and no oilier known setsmmic ft ee oscillation. THie ordinate scales of
the plots do not match hecause 'l w Ic is air estuiated amplitude spect rm and u ) W) is the
amplitude of a presumed harmonic signral at i =0. Marl\ features I thle plots are similar.
however, because both represent discrete Fourier transfmirnis iif tapered data piP w) cirres-

ponds to the DFT if rthe data times a hybrid taper as sliiiwt in (3.13) (3.1 4)1, The mn= 2.
0 and I siniglets. ha\ ing frequencies gien iii Table 5; are r eadils disceribhle. The prominence

of the ?n = 2 singlet is puzzlitng in light of its low iput -atiplit tide. The ri= I singlet

appears to be obscured somiewhiat h% notse iterference.
The F-rest of' the lit of pt 1w) toi tile ciittplex eigetispect ra is graphied in Fig. I 2.All fiv

Ninglets of S, are iibserxable with) better than 015 per cenit detectiin ciinfidenice. Their

measured frequencies are given in Table S - alonig wkith esit imaes of tle cxpected errors inl the

Table 5. 1 requencie i ,S, in yvntlietic record

Singlet Azimuthal Order m

input Singlets -2 -1 0 1 2

Input Frequency (mnz) .299800 .304615 .309337 .313874 .318226
Input Phase -85O - BY3 -2.71 126' 72'

F -Test Results

Frequency (mHz) .29973 .30436 .309356 .31371 .31889
Frequency Uncertainty .00022 .00034 .000074 .00018 .00035
Phase -740 -118' -1.5* 1480 870
F -value 5.5 13.7 86.0 66.6 5.9
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Spectral Estimate

1. using a Cosine Taper
1.6

E (a)

2 1.2

nO0.8

, ,,

freqL~ency (rn-iz)

Absolute Estimated Amplitude

A0

E
U 2

28 30 32 34

frequency (rnHz)

Figure I11. 1j) Amrplitude of a pctrale inte t u,InL: j cosine taper tvc w)j I or :i s,'lthc'llc record o ,
o h e, tunct'tol I I,.w)b1. s lheru 4( I i, the etii lted Aiiplc\ amplitude ot , deci ink sinu,oid in a

sn rthctic record ot ,S, using I iv,. eigentaper,,\ ',ith paraineter,,s2.\= Sn. 3 = 0.6 and i, = 0.01,1 In both(al)
and I b). three of the f'i\, csinlet, , tt ,S ,are , i,ible. Vhe true positions, oI' Ihl inpu I Ninglet, ire iiarked

frequencies produced hN file niethod desc.ribed in the appendix. 1he most poorly fit

frequency observation is within -'Iof' the trute value. Note tile toutgh equivalenc~e of thek-'est

values for the rn = ± 2 singlet lines,. file amplitude of the m = 2 singlet in Fig. I I is,

enhanced by niose flucttuations, hill the noise contrlhuion Iha,, incoherent phase. causing the

m =  2 /'-test value to fall relative to) (iat of neighhouring ols,.liation peaks. Ol file other

hand. an apparent noise -uhinu Ilith at the h~equenc.y of ml = + 2 single-hine allows its smiall
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F-test of fit of Estimated

Amplitude to Eigenspectra

95 . .... . . :

Figure 12. F-test values resulting troin a test of the fit ot estiiited anplitude w) to the eilenspectra
obtained using five eigentaper, with paramelers IA = Sin. = 0.6. and r 1 .001. The data is a synthetic
reord it .S: it conwts, 

it fie dec.i inc siniU,,oid, \k hoe frequenres ire listed in Fable 5. Al liv.e tae
peaks ibs,%e the '15 per ceiwt confidence lerel the runcurn 141wil is plotted in IiL. I lb [lie value
[ I 3 I correpond, t the '-90 per cent ontidence level. F = 4 40 i, tite 95 per cent confidence level, and
F - 8 05 is the '49 per cent e\el. Ihe true pistons o1the input sin2let ire miiarked.

amplitude to be detectable t in ih plot of tile P-est. Noe also that the /'-test has peak, at
frequency values not associated \ttltl ,2 singlets. These are caused by random statistical
fliuctuatlolls. The frequency band shown contains 05 independent frequency samples. There-
fore. one would expect lat due to randomness. roughly three values of the F-test in
Fig. 12 would protrude above F - 4.5. the Q5 per cent confidence level for the F-dtbtution.

We also took 340 hr of vertical IDA graviuteter data from statiot NNA. starting S.5 hr
after the onset of the Sumhava event. This record is relatively complete. with only two data
gaps of roughly '.5 h)T each at 05 and 275 hr into the record. Time series points falling its the
gaps were assigned the value zero. The data were sampled at 20s intervals. We low-pass
filtered and decimated the record so that it contained 7668 points taken at I00 s intervals.
Aftershocks that did not visibly affect the instrument in a non-linear manner were retained,
as their effect on the spectrum it the vicinity of oS is small. Sections exhibiting non-linear
seismometer response contribute significant energy at low frequencies. and so these were
removed.

We had to know roughly the Q's of the singlets of S,, to apply our procedure. The
Q 560 value tot S2 given by the model of Masters & Gilbert (1983) corresponds to

= 0.68. Chao & Gilbert (111180) estimate that the nt = 2 singlet of SS has a Q of 41 S. the
m = 0 singlet has a Q of o0t) and the it = 2 singlet has a Q of 50). The Q measurement
reported by Hansen & Schnapp (IQS2) leads to a decay paiimeter of 1 = 0.S4. We analysed
the record with a set of five eigentapers having parameters QXV= Sr. ' = 0.01 and i = 0.65.

The function II( .) I obtained using the eigentapers is plotted in Fig. I 3b and the ampli-
tulde of the spectral estimate using the cosine taper IyI.'ur) is presented in Fig. 1 3a. Again,
we graph the frequency band 280 f, 340mHz. Spectra were calculated at frequencies
separated by 0.163uHz using the DFT. Table 6) lists the frequency estimates of the five
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Spectral Estimate

using a Cosine Toper

6 (a)

4

ii

Absolute Estimrated Amplitude
S"

i-c

° (b)

29

E

"C'7 '11- I-j

Figure 13. (,j) Amnplituide wt 1 peciral eiCctI11Cc L[inL a coijfc taper tor a time ic rie. ot the Sciici~cci
cxciii rCeI'cded at IDL..\ itown \NN -\ \e 11it theC trCquecCIIQ 1111d 201-- r 34(li'a t cowaictii lhe i~e

,S, sindlt Oni\ iii Ot tie( sinelets ice i lisrville. 111) AMp~jlide t Ilic Wtun it4.Im a T11cc erCies
it te Sumbn.cxa ewn revi'ded it [DA\ .t~ilwii \N\ \\e piot ic fceqicen,\ ixiid 280)., r <340PHlI

,ontiininit the li~t ,S, sivlet,. butc akcair cm cinls tice (1elcepciicsttlcie*cltsi
deteicried 1, sicmL ire jndjc~iietd

singlets of i052 mnade by Buland et a/. ji'~) thewe frequencies are marked in Fig. I3a and 1).
Only thre in = t ' lines 'ire clearly %ible in Fig. I .,a and b. Candidates for the oither sintglet
resonanc:es are evident hut do not protrude significantly- ahove thre apparent ambient noise

level.
Figure 14 is a graph of the F-test of the fit of 4 (w) to the comnplex eigenspectra. There are
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F-test of fit of Estimated

Amplitude to Eigenspecfra

29
0

a)

I'l

* ,4._. .

Figure 14. I-tes, 1,, t el,tinaled aiiphludc . t(W phIled in I g 13a. lhe lime ,erie, heing ana.tyed i a

reord III Sumbjnc, eiel Iroli IDA 'saill NNA \\e pIl ile freqkLenN bind 280 <1 <,34 lli
nirtaiinl the Ike ,S. inLlet,. I ,ur Ot the inlgl,21 h'e J--tesl peak - , ,rre,p, ding to reater than 95 per

cclt -Intidne o detection. The polisni',o tire lie inlglei. adeterinned b% tackinLg ire indicated

four peak", ahoe tie 0)5 per celi detection confidence level in Fig. 14 which correspond to
singlets of- ,S2 . ihe n = I singlet appears to be contaminated b,, noise. resulting in a low,
as, mmetric variance-ratio peak. The estimaled frequenciesutc all five lines. and their asso-
ciated uncertainties. are listed In Table ii. The discrepanc, henveen tie ni = I frequency
estimate and that of Buland ct al. I 1971)) is anolther indicator i tile noise colltatllillation of
the ni =--! singlet. The other peak, in Fig. 14 ahive the 95 pei Cent confidence level are itost
likely due to ran1don fluctuatioins.

In the above eanples. we knew {approxiniatel\ ) the flequencies of the decaying oscilla-
tions and that they had large enough amplitude ito he detectable. To be useful. the multi-
taper detection algorithri tot decaying siLtlsoids should yield comparable results when either
or both iof the ahove conditions are not satisfied. Given the known frequencies of the gravest

seismic oscillations., one could use the algorithm to search for si-called silent events (e.g.
Kananioi & (ipar I1)'4). wiose exisetce is still coittrioverial. In the more conservative
enterprise of expanding and refining tle tree-oscillatnii data set it oirdei to constrain deep
Earth structure mole leliably, tile eigentapel algolithm ut te s hope o rerieving more

Table 6. I requenoe,l , it NN \ re,,,rd ,I suitabi ent

Single( Azimuthal Order m

F -Test Result,; 2 t 0 1 2

Frequency (mllz) 2998X .30526 .10918 .11423 .11830
Frequency Uncertainty .00027 .0X)60 .(X)041 0(t016 . IOOt I
Phase t14" -491 -43 142 '  

10
F -Value 1 7 4 2 5.0 it00 20 S

From Buland etal. (1979)

Frequency (mHz) 1(XI0 (4799 .109490 314(0 118499
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rginally observable nodes than are u~acesble using singe-tpe algoithms. CAre mumt he
exercised that peaks in thre Vi est due to rattdotm notse are itt! Iotisiden tflred asN se stoic tree-
oscillations. To this end. quatiiative comtparison (it tmore tliatn one seimic record is

essential. This has beeti done by comiig the standard technques of stacking and stipping
o! loss -liequencv seistmic records. (Gilber to & ioski 10)75) St tilh~e itirlitawper algorithmtt.
Tis is discussed Int Part 11 Of th1is paper.

5 Sumnmary

'0Welae Wes W be .i at tttial prttcedure filr deteriiitng tapers thtat optittille resist
spectral leakage tromt tii sde a frequency regioni of baiidssiddtl 2 for exporiennta llv decas -

ic stItisL!OIds cotitaminatd by ssbte noise. iultilyitig tWe data -y t e tapers creates a
niniiber tO ii1u series. Ail decajulgmsiitoid model is fitted to tire discrete FOUrier II atstorlus
tof the tapered dataI serie ea eahequettcy ot ituter (eqtatoti 3. I lhe lit oi thisnitidel

to Ilie data Is tested at each iteqitetc usitie a statistical 1--test teqittiti Ti) lts gises a
quaiitttve measure of the chatice that tMee is a decaxig situsimd A ar giset tioquen
Ill thle data. Wke liaxe shoss t that tisl procedure I"sa seisiN\ ic~e,: eeioto decayInig harmlonic.
lliies Inl tee tscilla tion data.

[In Part 11 of tisl, papea. "se sall pieseti a tnumtber of extensimt i ilted itultipe-ae
ti11011td oll hlatiottic atTalssis. W sMal eYplit tis lie teliniqitec hais ben tittdifed to)

estimate the harmonic cotmpttnernts tof recitrds containitng gaps. We discuss, tos)% siiitiiNds at
treqitetcte between the dIsciee FF1 bitt treqriettces can he detected itid Itiss this tteihtd
ca n be yttttibiiied wkithl cotiventioual tiulti-statioti stackitng prOCedut,1c T le eTtOluiti ott
closely spad hartotinic hi trted. Subsequently , we plait to inltridrie aliitIII two l
fWdhig the decay rates of frele oscillations, as well ais their frequeticie-.
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Appendix: error estimation

Tile methods of Section 3 can be used it) obtain estimates of the complex amplitude and the
frequency t)" a decaying sinusoid in a time series. Random noise can cause the estimaled
amplitude and estimated lrequency to deviate from the true values This appendix outlines
methods for calculating the expected size t1 tltese deviations.

Al Estimated amplitude

First, consider the estiniated amplitude PIwL. It is a statistical estitnlatol tol the tiue aplph-
tide u. The utility of J as al estimator can he gauged by its hias y) p and its nean square

error (I 1 l2 .Let the data x (t I be zero mean %lite ttole n (t) plus a deca.y ing stuisod
with frequency w-F. Then

x l t i=nlt) + / exp (iw .t at): t= 0. I ...... I (A I

where p is the true complex amplitude, a i, the true decay rate. and (n )t) tt*It') = o.\6,

We also assume that (n It) It' i) 0. 1 fhi, is justified as only the teal patt of the tt is
actually measured, leaving us free to define its imaginary part. Miller ( N-74. p. 411 gtes
further details.] The kth transformed complex eigenspectrum of the data Is

:kw) GI)k1y, (w)

=gk(tw)+ PVk(W wT.p V). (A.2)
where

g W) 1 k exp I iwt) wtt: ,,v) n (t)
1=0

and G,Yt (w) and Vk are as defined in Sectitmn 3. It follows that

(:klw) =g V (W - W 0.V) (A.3)

(:k IW Iw)) = ( , O =: 02w 1-3. +) IIPw ww. i*. ) ). (A.>)

The expected value of t, coinhiing 13.13) and IA.3) is

K I
pNu V* (0:.V)Vt I r w - V)

k0

K -I

V I I ~ 11l2
k - o
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When W = w T, (1(wI-)) =ju . so A2 is unbiased at the true frequency W-T. At other fre-

quencies 12 is a biased estimator of p.
The mean square error of i is constant at all frequencies, and using (A.6), is

2
(0/ A .P 12) = GV(A.7)

P

where

K I
p= V I Vk(0:i.)! 2

k 0

A2 Frequency estimates

Now consider the estimation of the true frequency wT. The true frequency can be estimated
from I I) the frequencies of peaks in the modulus of the estimated amplitude I1122 1)
mininia in the unexplained sample ,ariance ' (wj) introduced in (3.25). oi (3) peaks in the
random variable F(w)= (K 1)0 (Wj) , ('). These all provide approximately unbiased

estimates of the true frequency WT. and their mean square errors can be computed. as
shown below.

A2.1 IRFQU EN'IES ESTIMAT I-t FROM tI:AKS IN 12
The function I p(w) 12 achieves a peak at frequency wo . where

(2 wl./wl2 p lY0 = 0' (( )p = - I (Wo) 11 _ IA.

In a neighbourhood of the true frequency WT

O =0'(W1,I - O'(WoT) + (W'9 WT) 0" (Wot ). (A.9))

Taking expectation values of both sides, and assuming that (WO W T ) and 0"(WT) are
uncorrelated:

(0' (W ,
(W()0,T) A.)10)

Define the matrix %1(j) with elements

(nl = rn 1): =0. 1,2 ... _ V I, (A. 11

where /is an integer, and the vector v with elements

k 0

3(t)= exp( at): t0, 12 . N 1. (A.12)
P

Then sotne algebra shows that

(0'(WT)) = ilp , 2p• M(i) =0 (A.13)

as M() is antisymmetric. and

(0"(oT}))= p I P12,.Mill. ,. (A. 14)
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Therefore. from (A.Ol. (w0) w) = 0 and oo is an unbiased estimator of wT. To find the
mean square error of w6 , square both sides of (A.9) and take expected values:

((W -O o2T. ) V (A.15)

(4[0"(WT )12)

Using the relation

(x (ti )x* (t 2 )x (t3)x* (t4 )) 
= 4 explioT (t] - t 2 + t 3 - t4) exp I Q(t 1 + t2 + t 3 + t)A]

+ 2vlp 2t, t, exp ioL. (t3  4 ti) alt 3 + 1 4

+,5 r~t4 exp fio - (tI -- t 2 ) - a (t + t2)I

+ r, r, exp [iWTt3 t 2 ) - a(t 3 + t,)]

+ 6,,,, exp [i.T(tI t41 - U(+4l"

+0.( l +k, 6 t't, 5,t,) (A. 16)

one finds that

(I0'(oT) 2) P p {osM " s+-ok 2 sr} (A.17)

and

([l"(w)] 2 )p f4s M(4)S + 2o-Is + 114 (V M(2 v)2 }. (A.18)

where s has components

s,= [6(t) exp (at)f
2 : t= 0..1 N-- I (A. 19)

and r has components

r, = I(M( 2) .  
)t]2 t = 0. I . N - I. (A.20)

For sufficiently large initial signal-to-noise ratios, N I 12 i 2G I and

((U* - T )2) . N. (A.21)

The mean-square error of the estimator o decreases as the signal-to-noise ratio increases.
Figure A I is a plot of the estimated rms misfit of we. defined by

(WO - tT)rms ( _W0 _ -T

as a function of initial signal-to-noise ratio for tapers with parameters 0.6. 1.05 and

v= 0,0.01. 0.1, 1 using (A.15). The misfit is plotted on the ordinate as a fraction of the
Rayleigh frequency 0

R = 2ir/T. where T = NAt. The parameter NI P 12/02 is plotted on the
abscissa. One expects frequency uncertainty to increase rapidly with decreasing signal-to-
noise ratio, but for Nip 1 I2 '< 10. the estimated frequency uncertainty in Fig. AI is essen-
tially constant. This is because relation (A.15) ceases to be a good approximation at low
signal-to-noise ratios, where the first-order expansion (A.9) fails to hold, and (cWe - WT) and
0"(WT) are correlated. The solid curve corresponds to v 0" larger values of v correspond to
succeedingly finer dashed curves. The rms misfit (WO Wt),,s tends to decrease with
decreasing values of v (except for = 1.05 and NI p2/or> 80).
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L-0.01

, ... 1. . .

":" ' '":" (b)

=0.1

=0

Figure At ia.bh I ,tunaled rins nitift l etilllftcd 'ieqti e .un ,.f to true lr.qucn.'x I as . tunotilh of

A , p ok. fot taper, %.ith L\ = Xrr. 3 = 11.6. 1.05 and v = (I. Wll. 0.1 and I Ihe LurS, arc iemaningle-

for .% , '1 < 10 because iA 15 faikl to be a good appro\i onla ti nxrt.rlll% dc.'reise, w Ih de re ,-

[ing values o i sl'e paraneter v C\ccpf for 1 .05 and A o ,-. NO)j Ijntcertaint,, decreases ,,,, lh
increasing signal-to-noise ratio.

A2.2 I-R F QUI-N(IS ESTIM ATI-I) FROM MINIM A IN ())

Another estimator of the true frequency wr is w,, the frequency of a minimum in the
unexplained sample variance defined by

l '(w, ) = 0

The frequency e, is also an unbiased estimator Of coT .as

(4W'(wT) 0A
((,,:,(0T) =0. (A.22)

-. --" _- T___
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The result (A.22) can be obtained using (3.25) and (A.13):

K -I A' - I V - I
= iuly; 2  E ES > (t - t')vk(t)Vk(t) exp Q (t + t') 0. (A.23t

k=O tO t'=O

Also.

(" I ptr(M(2) r)}> o, A.24)

where the matrix r(j) has components

K I
W ' 0. 1 ..... .

k=O

and tr denotes the trace operation on matrices. Define also the matrix PtI, vl with corn-
ponents

=l rF, exp( -At)expt vt'): t.t =0.1 .. -I. (A.20)

Then the mean square error of estimator w can be approxintated as

l) (A-27)

s,,here

. 1

14'o4' " (r 2) + 2o 1 A12 Y i(Mt -)rl" I A._S
l- U

and

A I
(i7 (or 112) =  tr (M (4 ) " 

r(
2)
) + _o. p - \  I(M t2 )  )° I + I plI tr M p10'°)]V

t>0

(A.20 ) l
For VJW 2 2o..,,  1:

A~ __1

2 ,Y (w ),j 2

((W WI.)2) ( .) -• (A-30)( M 1 Ia  [r (M(2)r la, a 1 )1,

As s~nal-to-noise ratio increases. ((w. w(l.)2 becomes smaller. Graphs of (WI, -)rrs
W F2) have the same shape as the plots of (w- in)rm. n Fig. A I. but

(w, WL)j s is 10 25 per cent larger than (L4) WT)rms for a given signal-to-noise ratio.
Fer example, if' = v = 0 and ,N I p 2 o12. = 10. (w, -- WL'Jrms 0.1 (R .- and (wo, w I-)rms

= . 5.WR •

A2.3 I REQIUENCIES ESTIMATE) FROM PEAKS IN F(w)

The true frequency WoT can also be estimated fron the frequencies Uo. ot peaks m tie F-test
curve defined by F'(w. I = 0. As befoie. to first-order in (WI. O-r). assuming (U[ LA )
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and F"o-r ) are uncorrelated:

(F"(w r))
(W W. )  

(F" r) (A.31

By (3.27).

olF'(w) = (K 1) [( ) ' (O) 0 oo) '(Ow. (A.32)

Assume that @ and F'. 0' and . and 0 and 'are uncorrelatedat wT . Then. the expectation
value of the right hand side of)A.32) vanishes at W = WT. But.

2 W 4 {V l. .V)J2
N (c- ( = 1- IN  0

So (F'('.,..T i = 0l A. (F"i,.,.Ti5 - 0 . i, ain unhia'ed estimator oi ., , by (A.31 .

The frequency wF can be expressed in terms of we and w . Expanding O(ojj and
' (COF) in power series about their extrema to second-order in (wo - we ) and (Wc. w ):

F(W F ) -(- I)[6(w +-(w1. '))
2 (W)] (A.33)

and

0"(W 0 ) ('J.' - w ,)IF(CF)
(. F  W- (A.34)

oo (W') K-I

from (A.33). Substitute (A.33) in (A.34) and let

- (wo, WO0) ( ,+ WO) (A.35)
(.=CW------- ...

so that w1> = W, when tb = I. and w = co when C 1. Then cZ satisfies

-2 2(a + b.) W (I+2b 2a) = 0. (A.30)

where

10 (cW
a 

=

(Ljo' Wo)2O" (Wo)

b= . . .

The two solutions of the quadratic equation (A.3t1 are

o (a+b) ± )V b + 2+ 2a. (A.37)

The solution (.,+ is spurious because I -, as a or b - •, and truncated Taylor series

expansions in (A.33) and (A.34) are invalid for large values of&o. The second solution w_ Is
constrained so that I I_ I < I. and corresponds to ot lying between Wo9 and W, .

As cF is a weighted average of wo and wo,. one might expect wo: to be a more accurate
estimator of the true frequency coT. This hope is dampened when one realiies that the
deviations of wo and W , from the true frequency cT are strongly positively correlated.
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Thle corrIelation hetmeen W5t and w, call he estimated ais

where

t0

and

-(!"(21 t (M( 2 ) ri- lo exp at cit

where M(tI) has elements

ki = 1()6k exp (cik)b (1) exp (al). kl=0, 1. 2,. .

Using these equations one finds that the cross-correlation of' Lj and w, is almost unity.
For example. if v =0 and N IM 12 u2 = 10, ((wo WT) )(W, LWTI) = .Q22.- Any averag-
ing of the two estimators wo and w . will not result it an estimator whicli has signlificanlyl
le.ss error associated with it

Using (A._34). one can see that tor large values nf F. - . Theretore. we estimate tile
errors in the frequencies of the F'-test peaks. using equation ( A.27)1.

A3 Detection sensitivity

It is useful to knoW tile SCnsMttttt of the 1--test to the presentce ot a decay ing sinusotd of'
frequency (,T. Tile signal-to-noise ratio required tor detection of a sinusoid at a given con-
fidence level can he calculated. Suppose that the time series is given hy (A. I . with p either
pttrely real or purely itnaginary- It can he shown that at frequency wl- the random variahle
F defined in (3 .28 follows a nioncentral F-distrihut~on wvith noncetitrality parameter

,I 12 K I

(Kendall & Stuart 1971. The expected value of F(WTI is

2 +y) (K -I)
(Kw1 ) 2- (A.42)

IKendall & Stuart N7I9. p. 270).

In Fig. A2. (cT )is plotted as a function (of signal-to-noise ialio for sets of five tapers
with parameters Q2N = 81r. O = 0.6, 1 .05 and v = 0. 0.01 - 0.1 , and 1 . For a given signal-to-
noise ratio, the expected value of thle F-test grows with increasing v. reaching a maximum
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test expeztnt, ri vs n!+,01 signo. to -noise power roto

1-0. 1 , ' t-0=.01

99, 7<x - .fd~~i

rC 1

9L-0

9W, roni-u-lr,

,A ith increasingis shorter dishes. The 99 per cent confidence level f'or an -distributed random variable
v. itlr 2 and 8 degree, of treedonm (P = 8.65) is slio%% n. F-or a given initial signal-to-noise ratiko. (P increases
as v increases. Therefore. it is easier to detect a dlecaying Ninusoid using tapers designed ss ith large values
ot the noise parameter v.

when v = I . Suppose one wants to detect a decaying sinusoid at the 9") per cent confidence
level. To do this using tapers which have 0 0.6 and P = 0 requires a 25 per cent higher
signal-to-noise ratio tihan performing tite analysis with tapers which have parameters 0 0.6
and P= 0.1. Using tapers with 0 = 1.05 and P = 0. a 125 per cent larger value of I p ONtei
required thanr employing tapers designed with = 1 .05 and v = 0. 1. There is a tradeoff
between detection capabtlity (Fig. A2) and frequency uncertainty (Fig. Al), but tapers
designed with 0.01 :< v!5 I provide reasonable performance in both areas.

For comparison, consider the spectral estimate obtained by taking the discrete Fourier
transform of a time series which has been multiplied by a cosine taper. A cosine taper
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w, t) is defined by

WVctI =A cos t=0 .. ,N I (A.43)

where A is chosen so that

.V -

E" Ib v(tI12 = 1.
S-0

A direct estimate of the spectrum of the data x (t) is I .rc() 2 where
A" I

J-C(W)= Vexp( iWt)VC xit). (AA4}

1 0

The peak frequency w, defined by

-! I y {o 12 [ 0 (A.45 )

dw 1L. - c0

is taken as the estimator of the true frequency WT of a sinusoidal signal in the data. As
before. coc is an unbiased estimator of W-T and it has mean-square error

d 
l 

1c(W I2 2

((W Litr d2 _ - A.4o}

(.w= ";

Expresions for the expect at ions o t lie ight-hand side of ( A.46) are identical to (A. 17) and

(A.l}with it-tIexp ( at)replacmgvOt}.andp= I,
For data consisting onl of Gaussian white noise, 2 I) ca(l 2 . is x2 distributed with two

degrees of treedoni. and there i a probabilit of 0.0 that 21YcLc) 2 g
w i reachorexceed

.21 Abratnlo. i & Stegun Iqu5I. if I ,,(L12 exceeds the value 0.21 a22 at some
frequenc, . then ie is moie than lIM pet cent confident that a signal exists at that frequency.
it is easx to show that. for the true series ( A. II.(' )2

( w t) e\p at) + 0A (A.47)

soI that

I Yj
2  ,(,n (- wI (tl)e \) al))-2 (A,48)

't 0

is the value of the initial signal-to-noise power ratio associated with 9QI per cent detection
confidence at frequency L-.

Suppose one %,ants to detect a decaying sinusoid with decay parameter a = 0.6 (or decay
rate a= 0.6 it/T) at the 9) per cent confidence level. Using the spectral estimate
vcl (w)12, a value (If N i4 12 (2, of approxinately 32 is required. whereas using an F-test and

five tapers for .= .6, V = 0.1 NI .12
( .a 23.5 corresponds to detection at the Q9 per cent

confidence le'el. If the decaying smusoid has a decay parameter of a = 1.05. an initial signal-
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to-noise ratio of N I .u 12/02 104 is needed for 99 per cent confidence level detection using
the spectral estimate Iyc(w)j2. but Nlla 2/a only needs to be 38 when the multitapei

method is applied, using five tapers with O= 1.05 and v =0.1. In this case. the multitaper

approach is 274 per cent more efficient then the cosine-taper spectral method.
Clearly. the spectral estimate Iotto 12 is a less sensitive detector of decaying sinusoids in

a time series than the multitaper method. Much of this discrepancy in detection ability is

due to the eigentaper's preferential weighting of the start of the record where the signal-to-

noise ratio is greater. Also, more information is extracted from a given time-series by apply-

ing several tapers: the extra degrees of freedom allow a better-constrained least-squares fit of

the decaying sinusoid model to the data. Another advantage of the multiple-taper technique
is that it allows one to discriminate between signals which are truly harmonic, and those

Whl-ic lw, tini varying phw stnae enni i giilt tapers do
not.

The variance of the random variable F(WT) can also be expressed in terms of the non-

centrality parameter -y defined in (A.41 1:

(K )2 [4(y+I)(K l)+y 2

var [FWy )J =W (A.4t)9
8(K 2) 2 (K .3)

when the data are given by (A. I ), and p is purely real or purely imaginary. The height of an

F-test peak is not very well determined: -/var [/EWTIJ > 1 '/a(F(WOT)) when K = 5 for values
ot F above the Q0 per cent detection threshold.
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Multitaper Spectral Analysis of High-Frequency Seismograms

JEFFREY PARKI
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Spectral estimation procedures, %~hich emiploN sec eral prolate spheroidal sequences as tapers has e
been shos An to yield better results than standard single-taper spectral anali sis A~hen used on a
sariet% of engineering datad We appl% the adaptis e multitaper spectral estimation methoid of' Thomn-
son (i 982) to a number at high-reso'lution digital seisnic records and compare the results to those
obtained using standard single-taper spectral estimaties Single-taper snicothed-spectruin estimates.
are plagued b.\ a tradle-off between the %ariance ofl the estimate and the bias caused bs s pectral
1cakaE., App'lg '-~ 1,, rc.ducc bad.acjsata. increasing the %ariance ofI tne estimate
Lising a taper also unesenl. samples the record Throscing out data frocm the ends of the recoird
can result in at spectral estimate %khich does nit adequatel , represent the character ccf the spectrum
ot nonstationari\ proicesses like seismic w4asel crms. For example. a discrete Fourier transform at
an untapered record tie., using a boscar tapert produces a reasonable spectral estimate of the
large-ampliude portion oif the seismic source spectrumn but cannot he trusted to pros ide a good
estimate of' the high-frequenc * roll-tiff A discrete Fourier transform of the record multiplied hi a
more sesere tapecr tlike the Hann taper I which is resistant to spectral leakage leads tic a rellable esti-
mate ot high-Irequcnci s.pectral roll-tiff. but this estimate weights the anal ' ied data unectuall "Therefocre stigle-taper estimatoirs shich are less affected bhi leakage not ontc' base increased s.ar*
ance but also can misrepresntii the spectra of' nonstaticcnar) data The adaptic.e multitaper algo-
rithm auttiatitcatti\ adjusts beiseen these estremes. We demonstrate its adsantages, using tb-bct

-seisnii, data recoirded h\iInstruments in the An~ - Telenietered Seismic Network We also present
an anakIi s demonastraing the ha petn rc at of the at u Itttaper alIgori th m in pros ding lcc\ -variance
spestral estimates ss it h gocod eige resistance c hch do tiot (15ereniphastee the central portion of
the: recoird

i. t oil 0 ( t) dozen seismograms: in this paper we analyze tvwo
Specralestiatin isa p~erfl mthodof ata representative records. The spectra estimated using the

Spectral etinhittn s e to stcr ud\ m eto of da multitaper technique are compared with several direct
analsis~hih i cifen sed to tudy geoh~scal spectral estimates employing commonli used single tapers.

processes. The estimation of the spectra of' background Weswththem tiarapoch anyldueir
noise, linle components. and transient signals is central to reslts whn appled mt p high-requec sica vdsupa. o

the analysis (if' electric, magnetic, and seismic time series. petra ahn aplsisd o speifcpeswihi seismoram.
There base been mani techntques dlexeloped which are Spcrlalyiofsefcpheswtnasimga.
effectise for the -nI'i of' Ion g records of' stationary particularly those at regtonal or local ditances. can be

proesss. Unfranaysis .- hs ehiu- en difficult. It is often impossible to isolate a particular
processes Iffrtnte' thes technique ar not haeb isadn the rest

univ.ersally applicable to seismic data sets, In man\i stu- pae foeioae ao hs ydsadn
diesit s'ncesar\to stiatea sectum roma'sort of' the record and then makes a direct esttmate of' the

dime isees hsrsitoutimat can scru fr'ome a hordta \&aeform's spectrum without first tapering the data (i.e..
timeseres.Tht stuaton an ocurif omCof he ata using a bo~car taper).- the high-frequenci roll-off of' the

are missing or if' the data of interest (eg.. a seismic phase) estimated spectrum can be severely bia sed b\ spectral
are contained in a short segment of' a longer record. laae hrfr ti tnadpatc omlil h

- ~A new~ approach for esttmattng the spectra of' short time tiesrsbyaaprefepromngadceeFuir
series. kno\An as,. multttaper spectral analssis. has been timeseries b\ aFT tpe reduce spectrlieakge an discrtensouier
des eloped recentk We has e applied t'his techntque,. rnfr DT ordc peta ekg a ~es~
which A.as first presented hi\ T/icomsii [19821,- tic sec.eral reViCw of tapering is provided b ' Harris 11981)

The cosine or Hantn taper is popular in seismiic analystis.
being both effective and eas\ to calculate. The utllti of
the Hlann taper is bought dearly - ho~keser. 11f one s csc

No~ er- each data poiint in a ttme sertes as a constraitnt on the
'o at D~epartment (t (iciligi and (ieiphIsi-s. Yale t'nc.r estimated frequency content of the record, the Hann taper

sct~ Nes Ha en.(ccne~tcutdiscards 5/8 of' the statistical information tn a gt en time

series. This can be easil\ seen from the graph of' the
(opiright 1987 hN the American (ieccpficsicatl L'i. tt Hann taper in Ftgure 1. The data points at the e\trcnic,

of the record are w.eighted weakly, while the center of the
Paper number '7Btl6ib0 time series is emphastzed. This unequal weighting causeN
0t48-0227/87'( 1BH4)OSOt5 N0 the statistical variance of' a direct spectral estimate using a
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1 6 - an Another dlifficulty with seismic (lata is that the records
1H4nn are noflstationarv., that is., the statistical character of' the

1 2 --- 20%--cosine data changes with position in the record. Theret'ore I

1 0 spectral estimator w~hich weights the data in the center of'
0 8 boca thetiesremoehaiytadaaath -nlcn

0 6 overemphasize the signal energ\ in the middle o1 the
0 4 recori t . This can result in a misrepresentation of' the Spec-
02- trum. as we demonstrate in Section 3. The multitaper esti-
0 0 mate, which discards serv little data from the record and

0 0 04 0 8weights the data relatively es enl\. is not subject to this
0 0 04 08problemn.

Fi I CoolparNsoni pioi ot holc ri nri ii nd 20' cosinec tiaperN. Section 2 prese nts an outline of' the basic aglo ri t him
This outline contains sufficient detail to allokA the reader to - -

implement the algorithmn hut as oids derivaitions that can
I Liani dper to, he grecater than the sariance of a periodo- he found elsewhere. Section 3 dlescribes the seismic data

gtispccirail esti ifaic used in this stud\ and presents comparisotns of' the Spectra
iaI i d -; I~~ I~ LA5~ I i I) 1 U iiU I I I lI I I i I_ 1m a !-11 mu1S2 n-~td vh h r.... n locatl

I" (11 olI t .rniuiii (;n somei ohat h\ appl\ ing the :sll es eros. We demotnstrate the trade-off betsween Spectral
tsegt o o oi I lie e\1t remes of the record. for leakage resistance atnd kari.:nce of the spectral estimates

11I sace. the 2i't cosine taiper Fii ur I ) discards (Inl produced using the bii car. 20) cosine, and cosine tapers.
12 ; Of the as ailableI daitd a srimce constraints. Flow- \Ne compatre the h-as and s arince of' these cons entional
es er, lb' irj- INQ8 sliovS that this tiler his less resisti sN'1-l e-t Aper direct Spectral estimates swith the bias and
ance 1-~eiim leakage than a Miann tapler. \s ling IS \ aiiiiCe Of the iultitaller Splectral estinlates, Iii Section 4.

lki A single- L1,1, taper ,S Used, there \%ill he a traide-IVy A numecrical method for calculatng the prolate elg-enltpers
h~teneiiie~i tanc ito slectral leaikage !nd ihe s ariance is gis en in !he appenrdi \

JtIIilM21 Intrducsd !Ie iiiulitI,Iler spectral 2 rll ',I[ t III \IIR 11 ~ l~

!sLs echo que FIrst. lie i,i:.i ire mul.1tiplied h\ not ICi 1IIi~tIiiper me'tho)d Is based (I1n a lant il I taipers
nehut L % ctal Ie ceesitnri iper, [hits eIlds (hc t eitn l pcrllaae eIulieh

sel~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~III erlt~-dItCsrc rtter.41 Fkt~h titi c r "iS1titl Itte aNdc:i noeL,ii tiic-de taU1iled te
l)F4 t Caj ' 1 77 'Crci Ict c -,CCii. FAgei,!eji 7e'i ,o un ili rk sbI I Ire] ,it

are ~ ~ ~ ~ ~ ~ ~ MOO )rI'I(ed .114)j ItS: .iiiJIie .1frL Jetii~; p~ta c O

estimate Supplli s thai \ ire eiseii the lit ie time Series
The taipers are ,iitruc'cd s, :h.0 eaih Itper s.iiiples \ .110 . .- I Ms1hIchI Is aet (it diuee ,imlleIS 0if

the lei sere iltcritS: ifn Oiitrc whiile pmiit ililusule yuiznllM(L, 11CIri'Css J I k, V 1%k INSL11 asum 3
resistance itl pe~tral leakage Ths stliil:m11 it saimlie iiter%,tl - 1. W11iihoui IOS Of geCiier,Ilii0 . It
disca.rded h.% the tir'ti taper is p,irtiall\ rc.(Isered h\ tie ~,n amnc opnns.te tllste(rre
Secoind taper. fie tilormliiiln disk irded l h lie tirsi 11 1 pcrui iceeeniationi [Du. 1)3j
taipers is arll)rcirieseul h the third taiper. ind io (in

()nis a tews I(Il-order t-pers ire emink ed. as the liie!her-
o rder Taipers ,illoA~ an uriaccepta hle lci I mpe lLral le C-
,ige ( )te cain use the- c taipers lo llrldute ani estinitei thait \v e %k isi ii, est itate the ,umllituLdQ spectrumn
is nilt 1hamrperedL h\ the trisl-IT heisseen leakage aiii satri- L it 11 I shere s deoe vce aloe I
an~c Ihit plagues single-tatper esiats 1a %k sill (cili l rn h

Straie (11~~II the I)I 11iiLiII , ile llrII Cs 0 a. I'fom I

Statele spc~tral Csti~ohit his e rel ii~l el~ rge in;r- 1i11me seriesN \ cons Ciiional di. ect Splectral esti-
mnate It' I IIj S1 f I is foiund li tiUltil~ ng the dli

amte i nuheasing ,s a1 linger Iractlln OfI lie dliii IS diN- % .asqec aldatilr pli
,jrded ind the hi~is of the esti rmie is r,,ded cdl ii are \ h cjInX 1 CIld. a~r pkn

Inosistent estiniates (I C . thc sariance ot the estimnate DT

,!,(cs not dropI is, one Inmcases the ntumber ofI (li Itl a \ C
s(Unter,c this, it is LIoiiSCntioiiil IIl Smooliithe cSingle-

liiler spetrail estimateC hs apl In a n g ascrige ill andt fiils taking the ijUared mIodlus, of the reosulting
the estimiate Tbis reduces the s ariance of the estimate but IlUnctilOn V,/ I \111hl.l01h is discircee IsI contiliu."
re-sults 0 i Isbiirt- range loss of frequcnc resollutil 0 sit Aih / I las thle Ns quist f'rC1qUCIo\ / , I-We
therefore an increase in the bias oIf the CNst matle tilrii l/c i le impe-,r so tlii

[be multitaper Spectral estimates are fo~rmed ,s ,i
,keighted sumn I If the eigenspectrai Therefore the m1uliI-
.,iper Spectral esi mate is already a smoilh est inmite. it has X :

less ariance ihain single-taiper Spectral estimrates. ssbich The spwrail leakage proplerties of the dmi,i taper a
h,is e been Jesigned to reduce bias, and it is, also( a con- t.O I . 2,.. I cii he deduced rilni its D)1:
\isten t estimadtor The c mpamris in bet meen the bias and
sainICe properties lot the Single taiper indl multitpcr esti-i I

Mates is discussed funlter in Sections I' aid 4
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For conventional tapers the lunction 1.4 I has a broad main 4T prolate tapers
lobe and a succession of smaller side lobes. For example, 0
for the boxcar taper, a, -- 1 N and 1.5 /

I -- '2 c ' sin.N'-r/ 1.0 /
~. I-N. sin7-f 0.5 .

0.0 .'-
In this case the function IA (I/)I is readily observed to 0 .5
have a central lobe flanked by smaller side peaks. (The '..!'. . '"

phase factor e '' , results from choosing the time ori- 1.0 . ,.,, ',, ,
gin t -- 0 to coincide Aith the first data poirt. It does not -1.5 ..... ,

affect the leakage resistance of the taper.) The larger the D 0 0.8
side lobes, the more spectral leakage is encountered using
this taper. biasing the estimate X, away from its desired Fig. 2. The five lowest-order 4, prolate eigentapers The
value. This can be seen by observing that zeroth-order eigentaper v" is plotted with a solid tine, and the

higher-order tapers are plotted with dashed lines.

A" I) = f A (f-f ')X(')df' (2)

We seek those values of a for which the functional A is
which follows from substituting the Cramer spectral stationary. This leads to the matrix eigenvalue problem
representation of x, in the definition of XS, and therefore

C. a - \(N.W)a = 0 (5)

I, (1)12 f IA ('f-f')12S(f')df' which has as its solutions the ordered eigenvalues
1 > A, > A, > A, > ... > k,, I > 0 and associated

A good data taper should have a spectral window eigenvectors v 'V(N. ) : k = 0.1,2.V--1 (which have
A (f-f') whose amplitude is large in the central lobe components v,"; t=0.1,2,...-). Thev"(N,W) are
region where If-f'l is small and has low side lobes at discrete prolate spheroidal sequences [Shepian, 19781.
more distant frequencies. This reduces the bias in the which we also refer to as prolate eigentapers. We will

estimate by preventing the energy in X at distant frequen- suppress the explicit dependence of 0 ' on N and 14' in
cies from leaking over to affect the estimate ., 2 at fre- the following A prolate eigentaper with a time-bandwidth
quency .f. product of P = NW is called a P7,- prolate taper: it concen-

Suppose we wish to minimize the bias at frequency . trates spectral energy in frequency bands of width
due to spectral leakage from outside the frequency band 2 W= 2P N. As the Rayleigh frequency I N is the fast

If'-] I < W'. where 2 W is some chosen bandwidth. We Fourier transform (FFT) frequency bin spacing, a P-' pro-
maximize the fraction of energy of .A within the chosen late taper will have a main lobe which is 2P "frequency
band: bins" wide. For instance, tapers for which NW, = 4 mini-

mize the spectral leakage at frequency j from outside the

14 (1)12d frequency band defined by If--f (< 4 N. For large N
f (.> 100) one can construct a set of the v " for any value

A (N W) = (3) of the time-bandwidth product NW. As noted in the

f IA(J)F12d appendix, this allows the user to calculate one set of
eigentapers v" for a fixed value of N and to interpolate

Since no finite time series can be completely band-limited, this set to construct tapers for time series of various
A (N. WI < I for finite N and nontrivial W. The func- lengths. We have restricted the following discussion to 4-'
tional A can be interpreted as follows: in a single-taper prolate tapers, but similar behavior is found for other
direct estimate of the spectrum of a white noise process at choices of the time-bandwidth product.
frequency f. x is the fraction of spectral energy in that The five lowest-order eigentapers v.A, k = 0.1,2,3. 4
estimate that derives from the frequency interval shown in Figure 2 have been made for a time series of
.- ./ ' .14'; I-A is the fraction of spectral energy that length N= 128 and time-bandwidth product NW 4

leaks in from outside that band. The lowest-order taper (k = 0) is the familiar 4-7 prolate
It is con'enient from a computational viewpoint to sub- taper advocated ty Thomson [1971, 1977ab] and Eberhard

i ) into (3) to express A in terms of the data tapers 11973) and has a shape similar to conventional tapers such
'hcrieles rather than their transforms. If we seek a as the cosine taper (Figure 1). The higher-order eigen-
•.ic r fr an N point time series, the ,equence o',,' can tapers are markedly different from ordinary data taper,,
'-,,:'trcscnted as an N vector a. This notation allows us For even values of k, the ' are symmetric about th,.

'2-k';res 3 in matrix form (following the derivation of midpoint of the time series. For odd values of k. the "
... , o ParA et al 11987]. letting the decay rate are antisymmetric about the midpoint. All the tapers.

except the lowest-order one. have regions of positive and

AI\.4J a Ca 141 negative data weighting. We normalize the tapers so that

a .a (4)

•1A thehas n'omplmers t
0.' .'1 As the eigentapers ,v" ' are solution ,s to (5). the\ are

orthogonal:
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4vr prolate taper transforms K 9S (J" K I .(, 'y(j! (F9)

101 4

32 where K is the number of tapers used. If K is not large.
100 10 ,the smoothed high-resolution estimate (91 differs little

V r from an arithmetic average of the eigenspectra as X, - I

2, for the lowest-order eigentapers.
E 10-2 '1 ,' ..- Although straightforward, (9) is not the best multitaper
o - I ,: ,:"' spectral estimate to use. An adaptive spectral estimate

I , , , , i , e r

C -4 1(1 T- Y V' ) 12
AS (10)

0 4 8 2 6 can be devised which has frequency-dependent weights
d, (f) chosen to reduce bias from spectral leakage [Thwm-
son, 1982). This technique proves extremely useful in the

Fig. 3. Fourier transform amplitudes of the fixe 4- prolate tapers analysis of highly-colored spectral processes. At frequen-
shown in Figure 2. using the same con entions for dashed and cies f where the spectrum is reasonably flat, the weights
solid lines. d , () 1, reducing the variance of the spectral esti-

mates. At frequencies f where spectrum has a steep

V . , ,A (6) slope, the contribution from the higher-order eigentapers.
which have poorer leakage resistance, is reduced. The

(This can be clearly seen in Figure 2.) This relation shows trade-off between spectral leakage and variance of the
that each v6 can be used to provide an orthogonal sample spectral estimate is balanced at each frequency.
of the data x, ,, - The optimal weights dA can be found by minimizing the

Taking discrete Fourier transforms of the prolate eigen- misfit of the estimated spectrum to the true spectrum
tapers produces the spectral windows S (f). This misfit, although unknown, can be estimated

, I- , , statistically. The resulting equation for the %%eight d, (J
U,(.V,WJ) t r,'(N. W)e >.. A (7) is

where we have used the time-centered transform to elim- d4 (f) = /S' vIl)
inate spurious phase factors in the definition. The func- AS f)f-E B, (f/),
tion E= I if k is even: z, = i if k is odd. The use of t,
is a notational convention so that U is real-valued. Plots where S(j) is the true \,alue of the spectrum at frequency

of the UA for N = 128 and NW 4 appear in Figure 3 for j and BI) is the spectral energy at frequency .I that

k = 0,1-. 4. Most of the energy of the UA is concen- leaks in from outside the frequency band (f-- W f W).

trated within the specified frequency band as was required We replace the unknown value S I!) by its estimate SI(j ).

by maximizing (3). The spectral windows corresponding Thomsott [19821 found it adequate to approximate

to the lowest-order eigentapers have impressively small EB, (J) -_ - 2  --A, ), i.e., a, a constant fraction of the

side lobes, but spectral leakage resistance becomes pro- total variance of the time series:
gressively poorer as the order of the taper increases. The S I

lowest-order 2NW eigentapers (e.g., the eight lowest-order , = , (12)
4,r prolate tapers) have eigenvalues \4 close enough to r

unity that they are useful for minimizing spectral leakage. We find the estimate S II by iteration. We take the
The eigenvalues kA of the eight lowest-order eigentapers arithmetic average of Iyl)' and y I(/)1I as an initial
with time-bandwidth products 4, 3, and 2 are given in estimate of S(,I then substitute this %value into (11) to
Table I for N = 128. For reference, the value of the func-
tionial (3) is given for a boxcar taper which concentrates
spectral energy within frequency bands of the same width.

To construct a multitaper spectral estimate, one first cal- TABLE I. Fractional Leakage of Eigentapers
culates the complex "eigencoefficients" y, (f) by taking a P-n Prolate
DFT of the product of the data with each 1 v,"; ,"- P= 3 - -2

AO  0.9999999998 0.999999885 0.999948125
y,(f) = v, 5 x,e' 2'  (8) A1  0.999999978 0.999992014 0.997764652

0 2 0999999008 0999750480 0962155175
A 0.999972984 0.995477689 0733922358

An estimate of the spectrum can be made from weighted X4 0999500363 0951033908 0 2873-9619
sums of the eigenspectra Iy, 12, Thonson [19821 formu- Aj 0993525891 0.725208760
lates the problem of estimating the spectrum of a record A, 0943750573 0.307789684

A 1 0.721233936 0.060764834as an integral equation. The solution of the integral equa- Boxcar 0974748450 0966410435 0 949939339
tion is averaged over (,f-W,f- WI to produce the
smoothed high-resolution spectral estimate .05
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produce first guesses of the weights d. (/t), These weights mate. To make a fair comparison between the various
are then used in (10) to generate a new spectral estimate direct spectral estimates and the adaptive muititaper
Stf). and the process is repeated. Convergence is usually method, we will smooth each single-taper estimate using a
satisfactory within a fe" cycles, moving average so that each estimate averages informa-

Careful examination of the adaptive spectral estimate tion over roughly the same frequency band as a multitaper
shows that Parseval's theorem is not explicitly satisfied, estimate using seven 47r prolate eigentapers.
i.e.. there is no requirement that the energy of the spec- The effect of smoothing single-taper direct spectral esti-
trum estimate, integrated oer frequency, equal the total mates in this way is shown in Figure 4. The section of the
variance of the time series. This arises from the way that seismogram which is analyzed is shown at the top of Fig-
the mullitaper algorithm attempts to compensate for the ure 4. The unsmoothed spectral estimates are shown
effects of spectral leakage If the expected broadband bias below on the left. and the smoothed estimates are
E:B. (, %were to \anish. then (I1) would become displayed on the right below the record. The upper traces
d, = y A . and the adaptie estimate (10) would reduce are direct estimates using the Hann taper, the middle
to the smoothed high-resolution estimate (9) (except for a traces are spectral estimates made with a 2011K cosine, and
smaii multiplicati e factor due to the departure of the the lower traces are spectrum estimates which employ a
eigenxalues A, from unity) This would occur if the true boxcar taper. The amplitude is plotted on a logarithmic
spectrum were zero outside the frequency band scale on the vertical axis, and frequency is plotted on a
I / 'I "- II As (I A, I of the process variance within linear scale on the horizontal axis. Each trace is offset by
the frequenc. inter al 1. t! 'I I-t is leaked outside the a multiplicative factor of 50 from the adjacent traces.
band, the limiting case d, . ) - A, represents an attempt Notice that if one studies the unsmoothed spectral esti-
b.% the estimator to compensate for this spectral energy mates, it is difficult to distinguish any specific features
lost to leakage b% boosting the coefficients of the higher- common to each of the estimates except for a general
order eigenspectra in the weighted sum. When the spec- linear trend. In comparison, the smoothed spectral esti-
trum has a steep slope, the higher-order eigenspectra are mates have many of the same features. Each major peak
downwAeighted and the adaptie spectral estimate tends or trough appears at the same frequency in each of the
to%%ard the least biased eigenspectral estimate lil ). smoothed estimates.

Thomnson 119821 anal,,ed tIo synthetic time series using Unfortunately, since we are using real data, it is impos-
multitaper methods. Both series had fewer than 100 data sible to know the true spectrum for any of the examples.
points and a numerical precision of roughly 20 bits. In the However, the work of Thomson [1982] demonstrates that
first example, it ",a, demonstrated that a mulitaper the multitaper method provides a reasonable spectral esti-
approach could accuratel.% estiniate a spectrum vith a mate. This is confirmed by a study comparing the multi-
dynamic range of more than se',en decades and accurately taper estimate with the smoothed direct estimates on a
infer the existence of harmonic lines (i.e.. coherent synthetic seismic wave train with a known spectrum (C.
sinusoids) in the data. Thomson also analyzed a 64-point Lindberg et al., unpublished manuscript. 1987).
time series used by K'ai and Ma ,phi 119811 in a spectrum To study how tapering affects the spectra of body wave
analysis "shootout" comparing II spectral estimation tech- pulses, we isolate a phase in the middle of a seismogram,
niques, including the maximum entrop method as well as produce spectral estimates using each of the four methods.
a single-taper direct spectral estimate and several other and compare the results. The upper graph in Figure 5
popular spectral estimates. Unlike any of' the techniques shows the transverse horizontal seismogram of an earth-
tested by Ka'i and Marph' [1981], a multitaper technique quake which had an epicentral distance of 100 km from
was able to produce a spectral estimate which was similar the recording station PFO (in Pinyon Flat, California).
to the true spectrum of the synthetic time series. We extract that section of the seismogram corrresponding

to the shear wave arrival and estimate its spectrum by

3. SPI (TR\L Co('.\RIsO,s Ust\(i Stits\( D\ . each method. The spectral estimates are plotted on a
linear-linear scale in the lower portion of Figure 5 and for

We compare a number of single-taper direct spectral clarity are plotted in dimensionless velocity units on the
estimates with the adapti),e multitaper spectral estimate vertical axis. Each of the four spectral estimates have two
techniques on wide dynamic range, high-resolution seismic main peaks in the frequency band from 0 to 20 Hz, near 4
data. The advent of digital arrays with 16-bit data loggers and 14 Hz.
and the proposed 22- or 24-bit precision instruments These estimates are interesting to compare. Three of
demand an improved sophistication in data analysis tech- the estimated spectra (those plotted using solid and dashed
niques. We may soon have seismic data which are lines) have almost identical features (except for the offset
recorded to the same precision as the synthetic examples between them). In these spectral estimates the amplitude
of Thomson [19821. of the peak at 14 Hz is about 20% less than the amplitude

The data used in this paper were recorded on seismom- of the peak at 4 Hz. The other estimated spectrum (curve
eters in the Anza Seismic Telemetered Array. The Anza d. plotted with asterisks) does not resemble the other
array was designed to record high-frequency seismic sig- three estimates closely. The peak at 14 Hz is 10% higher
nals from local earthquakes. The instruments in this array than any other peak in this estimate. This change in the
measure surface velocity, and the data are recorded as 16- relative amplitude of the two spectral peaks would
bit numbers (this allows a dynamic range of 96 dB). See influence the choice of a corner frequency if these spectra
Berger et al. [19841 for a more detailed description of the were converted from velocity to displacement or accelera-
Anza array. tion.

The multitaper spectral estimate has a smaller variance The three spectral estimates which exhibit similar
at each frequency than a single-taper direct spectral esti- characteristics are the multitaper estimate (curve a, plotted
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Fig. 4. (Top) Comparison of unsmoothed and smoothed estimates of the spectrum of a high-freque:cy S wave.
The spectra are plotted on a log-linear scale and are offset to facilitate comparison. The boxcar spectral estimates are
graphed with a solid line. The dashed lines at the top of each of the lower figures are spectral estimates employing a
Hann taper. The middle curves are spectral estimates obtained using a 20% cosine taper.

as a solid line), the 20% cosine direct estimate (curve b, than others. The two estimates which are less subject to
the upper dashed line), and the boxcar direct estimate spectral leakage, the Hann direct estimate (curve d, plot-
(curve c. the lower dashed line). The spectrum showing a ted with asterisks) and the adaptive multitaper estimate
different distribution of spectral energy was estimated (curve a, the solid line), are very similar. Both of these
using the Hann taper (curve d). The Hann direct spectral estimated spectra clearly show the spectrum of the signal
estimate is unlike the other three estimates because it from 0 to 20 Hz from 20 to 60 Hz the spectrum of the
imposes a different emphasis on the time series. Refer- ground noise is visible. The antialias filters of the record-
ring back to Figure 1, it is easy to see that the boxcar ing system are 6 pole Butterworth filters which have a
applies equal weighting to the entire time series and the corner frequency of 62.5 Hz. The effect of the filters is
20% cosine taper weights 80% of the series equally. Not visible in the 60-80 Hz band. In the band from 80 to
surprisingly, using either of these two tapers produces 125 Hz the ground noise is less than the instrument noise.
essentially the same result. However, the multitaper spec- The variance of the adaptive multitaper spectrum is larger
tral estimate also gives essentially equal importance to in the low-amplitude portion of the spectrum and hence
every data point, like the boxcar and 20% cosine estimates appears unsmoothed. This is because the downweighting
(see Figure 2). The Hann taper puts over 80% of its of the.higher-order eigenspectra minimizes spectral leak-
emphasis on the middle 50()/o of the time series and gives age at the cost of reducing the effective number of degrees
the data in the first and last 25% of the series less weight. of freedom of the estimate at each frequency. If smaller
This rejection of data near the ends of the series causes variance is desired in the low-amplitude portion of the
.he apparent misrepresentation of the distribution of spec- adaptive multitaper spectrum, then prolate tapers with a
tra energy shown in Figure 5. larger time-bandwidth product could be used.

We also compared estimates of the spectrum of a verti- The spectra shown in Figure 6 which were obtained
cal recording of a nuclear explosion. This event had an using the 20% cosine and boxcar tapers suffer from the
epicentral range of 412 km and also was recorded at PFO. effects of spectral leakage. The spectrum estimate employ-
The section of data which was analyzed is bounded by the ing the 20% cosine (curve c, the lower dashed line) suffers
vertical dashed lines in the upper trace in Figure 6. The less from spectral leakage than the estimate utilizing the
analysis procedures were identical to those used in the pre- boxcar, as expected. The leakage of spectrum estimated
vious example except that the log amplitudes of the spec- using a 20% cosine taper hides nearly all the features in
Ira were plotted on the vertical axis. the ground noise between 20 and 60 Hz. The effect of the

The spectrum of the nuclear test has a large dynamic antialias filters is completely obscured. The apparent
range and has most of its energy concentrated below energy in the 20% cosine spectrum estimate is larger than
20 Hz. By examining the estimated spectra, one can see the instrument noise in the 80--125 Hz band by a factor of
that some estimates are more effected by spectral leakage 10. The performance of the spectral estimate obtained
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230,^l distances by the Anza array. Multitaper techniques like
the ones presented here and by Park er at. Ithis issuej

S'0appear to be useful tools for seismic data analysis.

u 0 4. STATISTICAL COMPARISONS

-2900

5 10 20 We compare the broadband bias and variance of the
TIME f SE.CS smoothed single-taper direct spectral estimates with the

smoothed high-resolution and adaptive multitaper esti-
LARGE AVL TLjD- CoV A' mates. We consider smoothed single-taper and multitaper

spectral estimates whose values at some frequency . are
1200. formed by averaging seven direct spectral estimates which

b concentrate the spectral energy at frequency .j main]%
S within the frequency band (/- Wf. W), where

100 W =4, N (4 times the Rayleigh frequency I, N). There-
d ,. . " fore we use 4,r prolate eigentapers for the multitaper esti-

., ' "mates the seven lowest-order 4-, eigentapers have good
S ", ,. resistance to spectral leakage (see Table 1), but we do not

. ,,,1 use the seventh-order 4- prolate eigentaper it allows
600 ."; excessive spectral leakage, as x, = 0.721233936. We

",- /,\ compare the multitaper estimates with a smoothed single-

taper estimate ., U') which is formed by averaging the
400 seven direct spectral estimates (-i NI K 3.

, _ _ _ _ _ -2, 2. 3 obtained using a taper !a I),. i.e..
0 2 4 6 B IF 12 14 '5 ' 20 3

FREou£NC+ (-Z3 gS,,) = 117 IVif-j ) (131
Fig. 5. A multitaper spectral estimate (solid line, labeled a) of the
frequency content of an SH wave (top) is compared with direct This estimate is mostly an average of spectral energy from
spectral estimates using the boxcar taper (fine dashed line, labeled
bI. 20"'6 cosine taper (coarse dashed line, labeled 0I. and Hann the band (f -4, N, .f 4 '). (The main lobes of tapers
taper (asterisks, labeled d). The spectra are plotted using linear
scales for the horizontal and Vertical axes. The boxcar. 20"<
cosine, and multitaper estimates of the S wa',e spectrum are
almost identical, but the Hann taper estimate is subsiantiall, 600
different. This is because the Hann-tapered spectra oerem- 4o - 1
phasize the data in the center of the time series and downweight 239 , i 1  -
data points toward the ends of the record. The section of the > '. i
time series which was analyzed is bracketed by dashed lines in the [ i I' ,

seismogram at the top. I I

0 S '2 15 20

using a boxcar taper (curve b. the upper dashed line) is i
even worse, since it does not exhibit any of the features of

SrECTRA . A.IAI -. ''the true spectrum between 20 and 125 Hz.
These examples show that each of the spectral estimates

has different advantages. The smoothed spectrum esti- 102
mate employing a boxcar taper produces a good estimate
of the large-amplitude portions of the spectrum but has 10'
very poor spectral leakage properties and is not of much U , b
use for spectra which have a large dynamic range. The '-'o

smoothed spectrum estimate using a Hann taper is less ....

affected by spectral leakage, but this estimate can c.,, . C
misrepresent the large-amplitude portion of the spectrum. rd

A smoothed spectral estimate incorporating the 201%
cosine taper combines the best properties of the spectral 10-2

estimates which use the boxcar and the Hann tapers. It FLTR _INSTRUMENT
retrieves the large-amplitude features almost as well as the 0 REsOna.E NOROUND noNOISE
boxcar estimate and has spectral leakage properties which 0 20 4,0 6C F ,
are sufficient for many geophysical applications. The adap- - L\0

tive mullitaper estimate has even better performance, Fig. 6. Comparison of the leakage of various estimates of the
representing the large-amplitude spectral components as spectrum of a vertical seismogram recorded 412 km away from a
accurately as the boxcar estimate and having excellent Nevada Test Site explosion. The spectral estimate using a cosine
spectral leakage properties. taper (asterisks, labeled d) and the multitaper spectral estimate

(solid tine, labeled a) give good representations of the spectra ofWe have also made multitaper estimates of the spectra the seismic signal (0 -20 Hz) and ground noise (20 -60 Hzl.
of more than a dozen events recorded at local and regional The spectra are ploted using a log-linear scale
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TABLE 2. Statistical Comparison [Papoulis, 1977, chapter II], so
7/,r

4  
Fractional ,r

4  3 3 1Estimate Variance leakage (1- A) Var S,0 " )j 1 12

49 3 ) 3

Smoothed boxcar 1.0000 0.0367
Smoothed 20! cosine 1.0814 0.0192 For the smoothed periodogram estimate (i.e.. direct
Smoothed Hann 1.8142 0.0093 estimate usinga boxcar taper). , = s,,. and VartS, tf) =
Smoothed high resolution 1.0196 0.0094 ((74/7). Values of (7/r') Var'S, ()j for the smoothed

iseNen 4r prolate eigentapers)
Adapative multitaper 1.0004 0.0094 periodogram, 20% cosine taper and Hann taper direct
(se'en 4r prolate eigentapers) spectral estimates are tabulated in Table 2. Notice that as

more data are discarded by the taper, the variance of the
spectral estimate increases.

For the smoothed high-resolution multitaper spectralother than the boxcar taper are wider than 2/N, so this is estimate (9),
not strictly correct, but we will make this approximation.)

=EIS f) I ( E 1)E ,, [A ) 12:4 . ariance ES ) K A o

AlITo gain some idea of how smooth the estimators are, ,r"I (A' I
we compare the variances of each spectral estimate for a K ( 1 )

time series composed of Gaussian white noise. For When the K = 7 lowest-order 4,r prolate eigentapers aresingle-taper estimates we define the covariance matrix used, then ESf) (.0095)r2 so the estimate S(l)
., = 4E[.x',0'".V)X2 (.V")} is mildly biased for white noise data. Also,

(14) VarS(l)j = E[S(f)l - (ES(Jf))2

f 4 "(f- i,.V)A )f j. N) df But

A A I
for ij = --3,-2,._ 2,2 [see Thomson, 1982, equation E I 1 (f) 12 1f = ., [E'. Y V) I':
4.11. where tr2 is the process variance defined in (12) and
.4 .f) is the spectral window introduced in (). If the E K lf)Hzt- rh]
single-taper estimates t , (' - rI ) and ., ( -p N) are
uncorrelated for i tj, then .% is a diagonal matrix, If the as the eigentapers are orthonormal (equation (6)) so
amount of correlation of the estimates ,,If ,,) is
such that one or more of the -(f iiN) can be VarS") = , K I E'E
expressed as a linear combination of the others, then A is k 0 A
a singular matrix, with at least one zero eigenvalue. In ,r4 A I
practice. A has a behavior which lies somewhere between K- ,

these extremes.
For white noise data the expected value of.S (I is When the K = 7 lowest-order 4,r prolate eigentapers are

I used, then Var{S(f)l = ,r4(1.0196)/7. Therefore the
ELS,IJ)I r2 Y \,, smoothed high-resolution multitaper estimate has only

7slightly more variance than the smoothed periodogram
but as estimate for Gaussian white noise data.

For the adaptive spectral estimator, dk =-,/X, for white
\. ' a2(t) I noise data (equation (4.5) of Thomson 11982]). Therefoie

0 
K I

for all i, r

3 7,E, Q

andES, '), ,r. The variance of S, (f) isa
The o S~QfI isand

E!(S (f)2: - (E3, (f))2 (15) A IA I
(r4 I I AA~The first term of (151 is Var, i k -

49,, 3 VN 14 0

As each function IX, (f iiV'N)1 is the sum of squares of ,r4 E (A,):
two Gaussian random variables, we can show that A

= r4
E 121ElS49/): --- 4 0, 1 \, , ,I\ F ,
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For the K = 7 lowest-order 4- prolate eigentapers, 0 040

Var!S(,) = ,r4(1.00038)/7. Therefore the adaptive mul- S smoothed Bo..C

titaper estimate has slightly less variance than the 0035

smoothed high-resolution estimate and slightly more vari-
ance than the periodogram estimate. 00 30

4.2. Bias Z, s0025

It is not useful to compare the bias performance of
these spectral estimates for white noise data. One is most 00 o smootheo 20% Cos,,

interested in a measure of broadband bias. Broadband
bias is caused when spectral energy at one frequency leaks 51

away to affect the spectral estimate at a distant frequency 00oothed 40% Co- S--

and is an important factor to consider in the estimation of ,9 -. Sr ,o Smoothed 50% Cos.,,

spectra of colored processes. S ,o '5.:-.

We take as our measure of broadband bias the fraction 0o005

of energy (1-A) in the frequency band If-j"I < K' that , .... Mtlo.,

leaks out to affect the estimated spectrum at other fre- 0 , '2 13 ,

quencies. Suppose that the record consists of a single
sinusoid, so that the spectrum is highly colored. The kth Fig. 7. Comparison of the variance and broadband bias of se~eral
eigenspectrum retains A =A, of the spectral energy of the single-taper spectral estimates (solid circles) and the multitaper
sinusoid within a frequency band of width 2 W centered on estimates (solid triangles).
the sinusoid frequency. The fractional leakage of the
smoothed high-resolution spectral estimate is

other tapers are sufficient unless the spectrum rolls off
A. J f I(f)1 2 df more steeply thanf '.

A- = 1- xo A Clearly, for smoothed single-taper spectral estimates
there is a trade-off. The more severe the taper, the less

h - f U, (f)1 2dl spectral leakage contaminates the estimate but also the
larger the variance of the estimate. The multitaper esti-

K mates manage to defeat this trade-off by using several
I orthogonal leakage-resistant tapers in a single estimate.

A, hThe relative variances and fractional spectral leakage that
are associated with each spectral estimate are listed in

If we use the seven lowest-order 4-r prolate eigentapers in Table 2 and are plotted in Figure 7 for comparison.
the estimate. A 0.99057, so I -- A 0.00943. For the
adaptive multitaper spectral estimate, a numerical calcula- 5. CONCLUSIONS
tion shows that I- A 0.00256.

The smoothed single-taper direct spectral estimates are Multitaper spectral analysis techniques offer the
also biased when the process has a colored spectrum. A seismologist formal and practical advantages over single-
single periodogram estimate allows taper techniques. Adaptive reweighting of eigenspectra

Iaccording to the predicted level of spectral leakage enables

I- = 1- f 1A (f ) 12 -1 -0.903= 0.097 well-constrained smoothed spectral estimates in portions
I of the spectrum that have large amplitude, while retaining

excellent resistance to spectral leakage in the region where
of the energy of a single sinusoid to leak outside its main earthquake spectra exhibit a steep roll-off. Comparisons
lobe. The smoothed periodogram estimate allows between direct spectral estimates produced using boxcar.

3 Hann. and 20% cosine tapers show that the boxcar taper
A IA r j)2df 0.0367 estimate is contaminated by spectral leakage, that the

N, I , % Hann taper estimates can be misleading in the high-

of the energy in If-f'I < 4' N to leak out. For the amplitude portion of the spectrum, and that the 20..
smoothed Hann taper estimate, we find I - A 0.00934. cosine taper offers a compromise between these two
while the smoothed 20%/ cosine taper estimate allows extremes. Therefore a 20% cosine taper may be adequate
I -A = 0.0192 of the sinusoid's energy to leak out of in many cases but would not be suitable for the analysis of
If-fl < W. either an unusually dispersive or unusually band-limited

The Hann and 20% cosine tapers do not permit as much seismic signal. However, these pathological situations
spectral leakage as the boxcar taper, but only the present no difficulty for the adaptive multitaper estimate
smoothed Hann taper estimates exhibit broadband bias There are drawbacks to using the multitaper method
characteristics which are as good as the multitaper esti- The adaptive multitaper algorithm consumes more corn-
mates. Numerical experiments using the wo-square and ,- puter time, since several FFTs must be computed for each
cube source spectrum models of Aki [1967] demonstrate time series and one needs to calculate a set of prolate
that spectral estimates employing a boxcar taper are inade- tapers for each time series length. The computational hur-
quate for representing the source spectrum roll-off. The den is becoming a less serious problem as computer
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Strict Bounds on Seismic Velocity in the Spherical Earth

PHILIP B. STARK, ROBERT L. PARKER, G. MASTERS, AND JOHN A. ORCUTT

Institute of Geophysics and Planetary Physics, University of Calitbrnia, San Diego, La Jolla

We address the inverse problem of finding the smallest envelope containing all velocity profiles
consistent with a finite set of imprecise r (p) data from a spherical earth. Traditionally, the problem
has been attacked after mapping the data relations into relations on an equivalent flat earth. Of the
two contemporary direct methods for finding bounds on velocities in the flat earth consistent with
uncertain T(p) data, a nonlinear (NL) approach descended from the Herglotz-Wiechert inversion
and a linear programming (LP) approach, only NL has been used to solve the spherical earth prob-
lem. On the basis of the finite collection of r (P) measurements alone, NL produces an envelope
that is too narrow: there are numerous physically acceptable models that satisfy the data and violate
the NL bounds, primarily because the NL method requires continuous functions as bounds on 7 (p)
and thus data must be fabricated between measured values by some sort of interpolation. We use
the alternative LP approach, which does not require interpolation, to place optimal bounds on the
velocity in the core. The resulting velocity corridor is disappointingly wide, and we therefore seek
reasonable physical assumptions about the earth to reduce the range of permissible models. We
argue from thermodynamic relations that P wave velocity decreases with distance from the earth's
center within the outer core and quite probably within the inner core and lower mantle. We also
show that the second derivative of velocity with respect to radius is probably not positive in the
core. The first radial derivative constraint is readily incorporated into LP. The second derivative
constraint is nonlinear and can not be implemented exactly with LP; however, geometrical argu-
ments enable us to apply a weak form of the constraint without any additional computationt. LP
inversions of core T (p) data using the first radial derivative constraint give new, extremely tight
bounds on the P wave velocity in the core. The weak second derivative constraint improves them
slightly.

INTRODUCTION records is a nontrivial matter, but we shall assume that

There are very few kinds of geophysical data from this step has been taken successfully.
The inverse problem of finding the maximum andwhich we are able to draw sound inferences about deep minimum velocities at a given radius consistent with a setearth structure. Most of the time, we are of necessity of measurements of T(p) on a spherical earth traditionally

content finding an earth model that adequately accounts has been attacked after an exact mapping into a similarfor our m easurem ents, disregarding the range of m odels p o l m f r a fa a t . ( ( ) t e e o e W
that predict the data equally well, any of which might problem for a flat earth. (T(A) then becomes T(X),
resemble the actual earth more closely. Contributing to where is epicentral distance in kilometers.) There are
the nonuniqueness of the solution is the paucity of data two quite different approaches to the flat earth problem:

available versus the complete description of the earth we Bessonova et al. [19761 developed a nonlinear scheme

seek and the fact that our few data are inexact. Even if (NL), a descendent of the Herglotz-Wiechert integral
we had an infinite amount of noise-free data, deliberate solution; Garmany et al. [19791 transformed the problem

so that the data relations were linear and solved it with
approximations in our assumptions (e.g., that the earth is line a ramm in (LP) B t n L and l ir th

spherically symmetric) may force us to treat the data as aupontat there a o l n ei the
inexact. The issue of nonuniqueness can sometimes be assumption that there are no low-velocity zones in the flat

resolved by choosing to optimize some property of the> 0, where v is seismic velocity as a

earth model while fitting the data, resulting in a problem function of flat earth depth z, or that the effect of low-
with only one solution. In other cases, one can delineate velocity zones has been removed from the T (p) data. Bes-

the range of models that satisfy the data and the assump- sonova et al. [1974, 19761 discuss how to preprocess the
tions of the derivations. One such problem is finding a data to remove the traces of low-velocity zones so that NL

corridor in the velocity-depth plane within which every may be applied; Orcutt [1980] shows how the data may be
velocity model satisfying given seismic travel time data prepared similarly for LP inversion.

must lie. Since travel time data include triplications and The work of i essonova et al [1976 is the latest in a

other complications, it is desirable to work with chain of inversions of travel time data relying upon the

r (p) = T(p) - pA (p), the vertical delay time as a func- Herglotz-Wiechert integral solution [Aki and Richards,
tion of ray parameter p instead. T is the travel time, and 1980, vol. II, chapter 12]; other notable papers in the

A is epicentral distance in degrees. Ideally, 7 (p) contains series include Gerver and Markushevitch [1966], Wiggins et

the same information as travel time data, T(A), but is a a. [1973] and Bessonova et al. [1974]. One of the explicitthe sameaims of the 7 method (NI) of Bessonova er at. [1974] was
monotonic function, continuous except where there are aid extro (U cures om t available
low-velocity zones. Estimating T (p) from the original to avoid extrapolating T(X) curves from the available

finite collection of measurements. Unfortunately, the

Copyright 1986 by the American Geophysical Union. extrapolation was merely moved from T(X) to r(p): NL
Paper number 6B5937. requires continuous bounds on r over a range of p. One
0148-0227/86/006B-5937$05.00 could imagine using nonparametric estimates of -r(p) to

1 t.X92
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construct continuous bounds in a consistent way, although There are no inherent limitations to the acuracy of LP:
this is not what is done in practice. Bessonova et al [1976] the limits are set by the precision of the machine compu-
used a statistical technique for estimating confidence inter- tations and the number of basis functions one uses to
vals for 7- at fixed values of p. but their revision of NL represent the earth. This has been proven rigorously by
still needed continuous bounds on r (p) which they con- P. B. Stark (unpublished manuscript. 1986), who also
structed by interpolating between the computed points, proves that within reason, the LP results are insensitive to
Interpolation of this sort can violate the maxim that an the particular choice of basis functions. In Appendix B we
estimate of a function should not deteriorate if more exploit the linearity of the data relations in the LP formu-
information becomes available: the interpolated bounds lation and the convexity of the spherical earth to flat earth
for r would be pushed out if an additional wide confidence mapping to prove that the extremal bounds in the spheri-
interval for 7- were computed at a p between two narrow cal earth are just the extremal bounds in the flat earth
confidence intervals. Interpolation would be acceptable if mapped into the spherical earth. Gerver and
it did not influence the results unduly, but we show that it Mark-ushevitch's [1966] flat earth mapping provides a one-
can produce radical changes in the velocity-depth to-one correspondence between spherical and flat earth
envelope. This was not apparent in earlier comparisons of velocity models predicting exactly the same r (p ) data for
LIP and NL [Garmany et a!., 1979]. It is very difficult to all values of p. However, when there is one velocity
predict the effect of different data interpolation schemes model that satisfies a finite and inexact data set, there are
on the models NL finds because the data and models are usually many. It is entirely possible that the velocity
nonlinearly related. Interpolation may rule out models model (there may be more than one) that maximizes the
that satisfy the finite set of data and yet may allow flat earth velocity at some depth while satisfying the data
unphysical models that violate the assumptions of the might not be the model that maximizes the spherical earth
method. For example, we must insist that candidate velo- velocity at the corresponding spherical earth depth since
city models be single-valued. Since NL builds its models depths and velocities in the two domains are nonlinearly
from the continuous data bounds, the bounds themselves related. Thus the coincidence of the extremal models is
must be legitimate T (.P) profiles, which in general they are less than obvious although it has been tacitly assumed
not. When they are not, NL modifies the continuous data heretofore.
bounds so that they do correspond to realizable velocity Values of r- (p) are difficult to obtain in some ranges of
models. The rather ad hoc procedure may result in new p. while A (p) measurements in that p interval may be
"data" that violate the original bounds. more readily available. It is therefore very useful to be

These difficulties of NL are not present in the LP for- able to treat A(p) data jointly with Tup) estimates. The
mulation of the problem. LP directly incorporates the LP formulation may employ A(p) and -r(p) data con-
constraint that candidate models be physically realizable: it currently [0,-curtt 19801.
avoids the problems of multivalued velocity functions in a To test the LP approach in the spherical earth, we have
straightforward and consistent fashion. LP escapes the inverted the definitive - (p) data set for the core [Johnson
need to interpolate by working in the other direction: and Lee. 1985] reduced from 90,000 contemporary Inter-
rather than construct velocity models by transforming the national Seismological Centre (ISC) travel times:, it is
data bounds (which must then be defined over a continu- unlikely that better spherically averaged values of T (p) for
ous range of p), LP examines all models that satisfy the the deep interior of the earth will become available for
finite collection of data and chooses those with the some time. Like Johnson and Lee. we treat the scatter in
greatest and least velocities at some depth. It is possible the estimates derived from the original T(A) observations
to use LP to discover the envelope containing all physical as statistical noise disturbing an ideal spherically averaged
T (p ) profiles that satisfy the finite data set since r itself 7- (p) curve and take the 99.9%/ confidence intervals as
could be used as the penalty functional, but this is not the strict bounds on the uncertainties of the T values. LP pro-
basis of the inversion. duces generally wider bounds than NL inversion. This

We would like to be able to incorporate other a priori might indicate that LIP is too conservative, except that the
information about the range of possible earth models into bounds found by LP are achievable: for every velocity-
our inversions to tighten the velocity-depth bounds. The depth point on the bounds there is a model that contains
assumption that dv/dz >, 0 is necessary with [IP and NL that point and satisfies the finite r(p) data exactly. The
but translates to an ad hoc proscription in the spherical NL bounds are thus sensitive to the interpolation of' the
earth: dy/dr < v/r. This allows low-velocity zones in the T (p) limits, as mentioned earlier.
spherical earth provided velocity increases more slowly Johnson and Lee [ '9851 constructed five T (p) data using
than radius. A preferable and more powerful constraint is A (p) to constrain the derivative to incorporate additional
that dy/dr < 0: no low-velocity zones in the spherical information in a range of p where T (p) data were unavail-
earth. We support this assumption with thermodynamic able. We compare LP inversions of their data with and
arguments applicable to the outer core and less stringently without these values and also with some A (p) data used
to the inner core and lower mantle (Appendix A), The directly. We conclude that the five data have a major
new constraint on the models is linear and so may be influence on the inner core boundary and determining the
easily incorporated into LP inversions. This restriction shape of the envelope in that vicinity. When the A(p)
would have to be posed in terms of the interpolated T (p) data are used directly, a wider and probably more reliable
bounds to be used with NL. Finding the correct interpola- corridor results.
tion is practically impossible because it depends non- The finite set Of T (p) and X (p) data is not very restric-
linearly on all the data simultaneously. tive: without additional assumptions the LP bounds are
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fairly wide, particularly within the inner core where the flat where (v) = dz/dv is the function we will use to
earth mapping is strong. Forcing the first radial derivative represent the earth model. We can find z (v) by integra-
of velocity to be nonpositive substantially narrows the LP tion if we know 4 (v) and w:
bounds. Assuming that the second radial derivative of the
P wave velocity in the core is nonpositive enables us to Z] (v)= f () dv (4)
tighten the bounds a bit more using a geometrical con-
struction. Both radial derivative constraints are justified Z, [g] is a linear functional of (v), and knowing z (v) is
by thermodynamic arguments in Appendix A. The final equivalent to knowing v(z) provided there are no low-
result, based on nonpositive first and second radial deriva- velocity zones, that is, provided (v) > 0, so that both
tives, is an extremely narrow envelope of velocities in the z (v) and z ons are single-valued.
core consistent with the data. This envelope, roughly We take certain confidence limits on 7p) and XP) to
comparable to that of Johnson and Lee [1985] but tighter be strict bounds on I observations of T and m observa-
particularly in the inner core, is reached by physical argu- tions of X; i.e., we assume that we are given two n vec-
ments. torsd andd* such that

METHODS d, < r,[] d, i 1 ... 1 (5)

We denote velocities in the radially symmetric spherical d, < X, ,] d +1 ... n (6)
earth model by v = v(r) and velocities in the flat earth by
I = v(z). Depth z is measured from the surface of the where n = I+m is the total number of data. We assume
flat earth and radius r is measured from the center of the that the observations are ordered such that

spherical earth. The velocity at the surface of the sphere, P, < p,+," i=l ..., 1-1, and i = 1+1 ..., n-1. The max-

which is the same as at the surface of the half-space, is imum velocity about which we have information is then
w -- v(a) = v (0). The variables v, r, v, and z are Y = max{ 1/pt, l/pl } . The data relations expressed in
related by [Gerver and Markushevitch, 1966] (5) and (6) are a set of n two-sided linear inequalities in

v. Following Garman3) et al. [1979]. we solve the problem
va- : = -a In(r) (1) of finding strict limits on the range of velocities by deter-
r a mining the range of depths in which each velocity is

Values of the spherical earth ray parameter dT/dA may be allowed: we alternately maximize and minimize Z, [ ] for
converted to their equivalent flat eartn values, dT/dX, by each target velocity v, subject to the collection of 2n linear
multiplying by the number of degrees per unit distance at inequality constraints (5), (6), and the positivity constraint
the surface of the sphere. ( )>0. Each of these optimization problems is an

The forward problems of mapping a one-dimensional infinite-dimensional linear program in the space in which
monotonic flat earth velocity profile into 7p) and XP) we decide to embed . Appendix B shows that the solu-
are solved by the familiar transformations [Aki and tions to these problems in the flat earth are just the
Richards, 1980, vol. 11, chapter 12]: extremal bounds in the spherical earth mapped by equa-

I~, tions (1), so we may solve the spherical earth extremal
bound problem by mapping the data into the flat earth,

r G) = 2 (v (z) - 2 - p2) d.- solving the flat earth problem and mapping the results

back into the spherical earth.

K )=2f p (V (Z)- p2)- 'dz SOLVING THE FLAT EARTH EXTREMAL BOUND PROBLEM
0

where z (p) is the turning depth of the ray with ray param- In practice, we must describe the unknown earth model
eter p, i.e., the t npth o theoay withay the () with a finite collection of numbers - a computer can
eterep.e.,nhe de pt tariableo eiocity v. Cing t not store a value of (v) for every value of v. If we write
independent variable of integration to v, we find as a linear combination of a particular finite set of basis

li/p functions, the coefficients in the linear combination consti-
2f (0,- 2). dz tute a finite description of the model a computer can use.

dv The basis set is acceptable if we are able to approximate
1/P the data and depth mappings of any arbitrarily well by
f - dz using more and more basis functions of the class that we

K,) = 2 p (V- p .- dv choose (equivalently, if the span of the basis functions is

weak-star dense in the limit). The integrals for the map-

For a particular choice of p = p, these integral relations are pings may be performed for the basis functions individu-
linear functionals of dz/dv: ally, and the resulting numbers, scaled by the coefficients

in the expansion, may be added to give the value of the
integrals petformed on 4 since the integrals are linear in t.

r,7[] (A p,) 2 f V 2 p, 2)' 4() dv (2) We can avoid numerical quadrature and retain the highest
accuracy in our computations if the integrals can be per-

I/r, formed analytically for the chosen basis functions.

X, [ X] Kp,) = 2 f p, (v _p,2 ) C () d (3) Delta functions are a natural basis set for the flat earth
problem because they give rise to homogeneous layers in
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v. Intuitively, we see that such layers allow changes in Recall that w is the minimum velocity and y is the max-
velocity to be made as early or as late as possible. We can imum one. When we choose a certain target velocity v,
support this more rigorously: the fundamental theorem of we insert extra basis functions bL- i and bL at
linear programming [Luenberger, 1973] states that if there 1/(1/v+ah) and 1/(1/v-ah), where a is a small posi-
is an optimal linear combination of the basis functions that tive constant, about 0.1 typically.
solves the problem, there is an optimal solution comprised We now write 4, the unknown earth model, in terms of
of a linear combination of at most as many basis vectors its basis expansion and perform the integrals (2), (3), and
as there are constraints. If we were to choose boxcar (4):
functions to approximate the solution, then in the limit as L L
the number of basis functions goes to infinity and the = bj = Y , 8(, - v,)
boxcars become vanishingly narrow, we would still require j- J-i
at most 2n basis functions to represent the solution: the
solution would tend to a sum of delta functions. (Notice T, [4] = 2 , (V, 2 - p 2)" (8)
that in using a delta function basis and finite-dimensional Ji/p,
linear programming, we must widen the constraints on
from > 0 to > 0, this extension apparently causes X, [4] = 2 . 1p, (v-2 p,- (9)
difficulties in the velocity domain because we lose the con- I /p,
straint that v (z) is single-valued. However, if the solution Z 1 = (10)
is interpreted in the limit as the lower bound on J
approaches zero, merely discontinuous velocities are gen-
erated.) The delta function basis has some practical where the index set J, I v, <x) . Note that (9) is
benefits as well: the integrals (2), (3), and (4) are trivial, unbounded if there is a basis function at v= l/p,,
and we may guarantee positivity of (v) just by requiring i E {1. n), and so that particular choice must be
positivity of the coefficients in the basis expansion. avoided. This minor complication has been resolved in a

While delta functions are truly optimal only when there consistent and acceptable fashion by defining the integrals
is complete freedom to place the layers where needed (i.e., on open intervals, so it is not a fundamental limitation.
in the limit of an infinite number of basis functions), we Equations (8), (9), and (10) may be written as vector dot
can guarantee flexibility near the target velocity v where it products:
is most crucial by inserting basis functions on either side
of v. This tailoring of the basis expansion to the target
velocity has produced substantial improvements in the X,[ ] = X, (12)
computational efficiency over earlier realizations of LP Z' [ = (13)
[e.g., Garmany et al., 1979]. P. B. Stark (unpublished
manuscript, 1986) provides a theoretical account of the In (1 1)-(13), C is the vector of coefficients (, in the basis
improvement, expansion (7) of t,

The choice of a delta function basis for dz/dv suggests
that we are approximating a problem where
z (v) E BV[wy], the Banach space of functions of 2 (v 2- - p 2) '1 v, < l/p,
bounded variation on the interval [wy] with the variation = 0 11 > I/p,
as the norm. Our delta function expansion of dz/dv leads 2p, (v72-p,2) -  V) < l/p,
to a step function expansion of z(W)E BV upon integra- XJ -p
tion. Spacing the basis functions evenly in velocity is not 0 V >1 l/p,
desirable: most of the sensitivity to the data occurs close v, < v
to the surface because the integral (2) depends on 1/v. It Z,, --- <
is preferable to space the steps evenly in slowness, i.e., v>t
reciprocally in velocity. We have found that the numerical
solution is much more stable with this spacing, partly For a given v we wish to minimize
because it improves the conditioning of the mapping
matrix. It can be proven that the span of a reciprocally :Z,• (14)
spaced set of step functions is weak-star dense in
BV[w,y] in the limit, so a basis of this form is accept- subject to
able. Our preliminary basis set shall be

(7) d, < r, . d, +  i= 1,.
d, X. d, 1=1+1... n

where

I Minimizing +Z,.C minimizes the depth to v, and mini-
- 1/y + (L -j - 2)h j - 1 ... , L-2 mizing -Z,.J maximizes the depth. These are standard

finite-dimensional linear programs, and software to solve
and them is widely available. Two moderately large linear pro-

h = l/w- 1/) grams must be solved for each targ,'t velocity so the com-
L - 3 putational effort is far from trivial.
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CONSTRAINING TIlE RADIAL DERIVATIVE OF VLLOCITY where

An essential assumption of the foregoing derivation is F, (0) 2p, (0-tan0)
that C(v) > 0, i.e., that there are no low-velocity zones in 0, Cos (., v,
the flat earth. This becomes the ad hoc requirement that
dv/dr < v/r in the spherical earth: there may be low- cos"' m(, , I/p)
velocity zones. The low-velocity zones are mild in the These three expressions may also be written as vector dot
crust and upper mantle because velocity increases no fas- products (11), (12), and (13), with the new identifications
ter than radius, but in the core they can be major features
of the solution. It is geophysically preferable to assume F,( - F, (0, ) v., < Ip,
that there are no low-velocity zones in the spherical earth: r,. =[ 0
dy/dr < 0. In Appendix A we argue that this should be
true within homogeneous, adiabatic regions in the earth J 2 (0,j - b,) v, < Ip,
composed of "normal" materials. These conditions are 0 v> li/p,
generally thought to apply apprximately throughout the In (min {t,,) Iv) Vi < l/p
outer core, and are probably not violated within the inner Z,
core. The new assumption does not contradict the previ- 0 , > l/p,
ous constraint on the flat earth derivative- it is more res- The new finite-dimensional problem with radial derivative
trictive: constraints is to minimizedva

d- < 0 ) a (15)
dr V

a result easily obtained from (1). Inequality (15) is linear subject to the constraints
in . so it can be incorporated into the inversion with the a , >, 0 j 1. L
same mathematical machinery. However, we may no d, . d = 1, /
longer use a delta function basis for because delta func-
tions violate the new constraint everywhere they fail to d, < X,.( <d,* i 1+1, .... n
vanish. If (15). which depends on lI/I, is to apply exactly Minimizing +Z,.' minimizes the depth to v. and mini-
over the support of a ba ,s function defined on an inter- mizing -Z, . maximizes the depth. These are also stan-
val, the basis function must also depend on /v. Loga- dard linear programs and may be solved straightforwardly.
rithmic functions in z(i) correspond to /v basis func-
tions for = dz/dv . The span of reciprocally spaced pieces APPLICATION TO THE EARTH'S CORE
of logarithmic functions is also weakly dense in Bl/w y]
in the limit as ti'e number of basis functions increases We have applied the theory to r (p) data for the core
without bound so tiis basis is acceptable. P. B. Stark obtained by Johnson and Lee [1985] (Figure 1). We follow
(unpublished manuscript, 1986) proves that the solution is Johnson and Lee in interpreting the scatter of the data as
not sensitive to the choice of basis functions provided they a noise process distorting an ideal, spherically averaged
get closer and closer together as more of them are used data curve. The data bounds determined by Johnson and
and provided enough of them are used. The logarithmic Lee are the 99.9% confidence limits on - (,pl which both
functions are particularly good because fewer of them are we and they take to be firm bounds within which - must
required than of other basis functions (e.g., ramps) to get lie. P. B. Stark and R. L. Parker (unpublished manuscript.
results of the same accuracy. We proceed by expanding 1986) have developed a method of inverting the
in a new set of basis functions c, and performing the confidence interval data without reinterpreting the inter-
resulting integrals (2), (3), and (4). Let vals as strict bounds. The results of inversion with the

statistical treatment of the bounds, though different in
detail, are surprisingly similar to the result- assuming strict

-- data bounds. In reality, the noise components of the
observations are probably not statisticalN independenw

where because they are principally the result ol largc-,ii.
heterogeneities in the earth and anomalies a.soci.ited "% -Ii ' 1. 0 v< 1 : 0, otherwise) the sources and receivers: the actual statili,,c ot h -

The velocities I, are defined as in equation (7) except that values are largely unknown and almost ccriaminlk
they havc been put in increasing order (the two velocities Gaussian.
bracketing the target velocity are no longer at the end of The inversions that folloA used I) hasis tw, .
the list). Now the preliminary expansion and an addition, , ,'"

'[ = (,[ , - F, O. )1 the target velocity Using 20 ) did t,,i ,'... '
i the results: the bounds hasc WTI'n geld .i'.,.

inversions started atl i radius i 14 O k, I

Xk[I = 2 , (0, - i?,) which Johnson and t ec orrekict ' h.
I p, ,PRIM anisotropli carth !,,d [I

19811 'C used I MInnirn ~ ,t .

Z,[ ] = In -- set about 90 target ' l 'w '

maXirniMe the dcpith i b."



-7-A±,a 236 or

UNCLASS IFTIED LA / Il O.



tt

ili

1__2_A_11

* -.--J-

JQ3P2

... . .. m,, i a al l I i~m m i•_ _ _n w 3l



STARK ET AL.: SPHERICAL EARTH SEIS MIC VELOCITY BOUNDS 13.897

1-00 1 100r

600 .u , qA 1

200
01)"

500

0o 0 -) 0 0801 I' 1 i

100q fCor7IIlr I

Fi 0 1. Th-()dt-o--n--ndLe(95-rpotd-he Fg .Vlciybud aluae ihotrqiig odces

Fig 1.The7 () dta f JhnsnadLe(98 marppinged re mitt.edocte expandsio oflulted wiou showsin h o crahse
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by ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r Jono n e.Tesldln nFgr i h P N ounttds ae epnrrowerf tha nd he w daoa re uci b ese
soeutin usin largl of ue Jnof eoiy0k and Leevs 11985 ar to' thus teecu e molsuthat seatif the orginarintylsto

the dase lin isndo the soutoit cuing the cove tha to) dat. Theage exion in the LP bounds are
alsuesn cntrute nlyth fat) eathe velopes gae detern- dect toe thant sifie the atasd tween data wher
miJneob aou 18Lretlcie. The shad ienFiued egin the c onsit ntm are noroehnt sot demaning, becase

is Johnson and Lee's NL solution based on all their data. free to make the depth smaller or greater as asked. One
Though both approaches begin with the same T (p,) data,shudnttatenifhenerxcsosofheL

manymor soutins ae acesibl to he P tchnque bounds were connected, simulating the effect of interpolat-
_____________ ing the r (p) data, the resulting envelope would still lie

0 0 outside the NL bounds. Neither NL nor LP claims that
the bounds themselves are reasonable velocity models, but
rather that, in the absence of additional information, each

10o00 velocity-depth point on the bounds is contained in some
velocity model that does satisfy the data. The NL solution
does not exhibit th~e same ragged behavior as LP because

8001f the ?-(p) data have been first interpolated to get continu-
I ous bounds. It follows from the wide difference between

the results of the two approaches that the NL answer is
001 sensitive to the precise interpolation procedure employed.

Unfortunately, it is clear that although technically correct,
the LP bounds are too wide to be very interesting. This is

It '10not a fault of LP; on the contrary, it shows that the
present list of r(p) data is insufficient to bound velocity
very well: if we want tighter bounds, we must either make

0(1(1additional assumptions or introduce more data with the
same high accuracy.

0 Johnson and Lee 119851 used A (p) values from the
1) Tonto Forest Seismological Observatory to construct five

0 (00 _100 values of r (p) to refine the envelope near the inner core
t'lof ?I/ (A F1 ' boundary. The sensitivity of the bounds in that vicinity to

Fig. 2. Two extremal solutions in the equivalent flat earth, one teefv ~)dt scerfo oprsno h oi
(solid line) minimizing the depth to a velocity of 200 km s- , the and dashed bounds. There is no need for us to interpolate
other (dashed) maximizing it. Notice the extremely large values to incorporate the additional information since LP can
of velocity and depth from the exponential mapping. exploit A (p) data directly. The A (p) data are shown in
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Fig. 5. Velocity bounds in the core when v is required to decrease
with increasing radius. The shaded zone is oblained using all
thirty data of Figure 1. The region bounded by dashed lines is

(,0 found when the five interpolated data are omitted; that bounded
by the solid lines results from replacing the interpolated i- values
by the A values of Figure 4.

( 01.2 016 0 0.20 0 0.24

-ail at" '" 1, r 1) (. Am ') solid line represents our preferred solution since we would

Fig. 4. A(p) data of Johnson and Lee [19851 shown as circles. rather use the A(p) data directly. Each pair of bounds is

The solid curve shows the predictions of the 1066A earth model. determined by about 180 points. Figure 6 superposes the
We have assigned uncertainties and adopted values at five ray bounds from 25 r (p) data with and without the radial
parameters for our inversion; the numerical values appear in derivative constraint. The power of the radial derivative
Table 1. constraint is immediately evident: the corridor is extremely

narrow, even in the inner core where the exponential
Figure 4 as circles, along with the A (p) predictions of mapping takes its greatest toll. An important reason con-
model 1066A [Gilbert and Dziewonski, 1975] and our crude straints of this sort are so powerful is that they constrain
assessment of errors in the range of p where - was not the model at each point, whereas data constrain integrals
available. The error bounds are based upon the variance of pieces of the models.
of seven A (p) points at about the same p. These conser- We would like to require the second radial derivative of
vative values were conferred because so few measure- velocity in the core to be nonpositive (Appendix A).
ments were available and because the A (p) data, from an Manipulation of the flat earth mapping (1) shows that
array in central Arizona, are not expected to be completely d2v/dr' < 0 is equivalent to - (dz/dv)2 < ad 2z/dv2, a non-
representative of the spherically averaged earth. We linear constraint in this formulation that cannot be
adjusted the A (p) values to 3480 km by subtracting the imposed exactly in LP. However, we can use a geometri-
effects of the crust and mantle of the PREM anisotropic cal argument to rule out some of the corridor allowed by
earth model to be consistent with Johnson and Lee; the the first radial derivative constraint. It must be possible to
reduced data are given in Table 1. join any point within bounds incorporating the second

We can tighten the bounds by making the assumption derivative constraint to both ends of the envelope with a
that dv/dr < 0, as described earlier and justified thermo-
dynamically in Appendix A. The dashed bounds in Figure i00
5 are determined from the 25 T (p) data, while the solid
bounds include the five A (p) constraints from Figure 4; (000,

the only noticeable difference is in the vicinity of the inner
core boundary. The shaded zone is the region obtained 2 -'oo
from all 30 rp) data of Johnson and Lee 119851. The

TABLE 1. Five Values of A for Rays Passing Near the i
Inner Core Boundary - Oij

p, s deg - I p, s km-t  ,deg

1.775 0.02922 119.752
1.830 0.03013 115.003 .00
1.880 0.03095 98.026
1.983 0.03265 109.682
2.033 0.03347 112.670

Each A value is assigned an uncertainty of :t 16.12 (I t, ,
degrees. The values have been reduced to the surface
of the core (radius 3480 kin) by subtracting the pred- Fig. 6. A comparison of the velocity bounds with and without the
ictions of the PREM mantle from the observations constraint that v decrease with radius using the 25 r values in Fig-
shown in Figure 4. ure I not based upon interpolation.
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3500 plane that contains all models consistent with the data and
I the constraint that there are no low-velocity zones in the

WO flat earth. The original formulation has been improved in
I several ways: we have added the ability to include A (p)

2--,00 data in the manner of Orctitt 11980], and we have shown
how to select a set of basis functions in the numerical

2000 approximation of the problem so that precise bounds are
-found wtha relatively small number of layers.

1)00 The requirement that there be no low-velocity zones in
1000 the flat earth leads to the ad hoc restriction in the spheri-

cal system that dy/dr < v/r. This inequality permits low-
300 velocity zones of increasing intensity as one approaches

the center of the earth. We show by thermodynamic rea-
0 soning that P wave velocity in the core should increase

80 '90 10 0 11 0 12 0 with depth so that dy/dr < 0. The constraint remains
1'rority (km .)linear when mapped into the flat earth and so may be

Fig 7.Mot rstrctd slutondisussd n tis apr, how b readily included in the linear programming formulation.
Fig.y 7. Most resrite toltio dicuse in thise paper, shown byr We a nhthe large dashes. The velocity must decrease with radius and the Ioso hti sqielkl htdvd2 (0i h

weak form of the constraint that d2v/dr2 < 0 has been applied core. This condition can not be mapped into a linear con-
separately in the outer and inner core. The data comprise 25 -r dition in the alternative domain and so it has not been
and five A values. The region contained by the solid lines omits fully exploited-, a weak form of the condition can be
the constraint on the second derivative of v. The PREM model is efre ihu n diinlcmuain
plotted lightly dashed. PREM does not satisfy thera (p) data. efre ihu n diinlcmuain

We have tested the theory with T' (p) data for the core
curve that is never concave up as our figures are drawn, prepared by Johnson and Lee [19851 and used by them to
We can therefore exclude anything to the left of line seg- constrain the P-wave velocity profile. Our technique pro-
ments intersecting the lower bound twice. The upper duces numerous velocity models that satisfy the finite list
bound is a bit more complicated: we can exclude anything of T (p) data but lie outside Johnson and Lee's bounds-,
separated from the rest of the envelope by a line that the LP bounds are much wider. The data alone are
intersects the upper bound twice and the lower bound insufficient to resolve velocity well, so it is desirable to add
once, Figure 7 shows the results of this proscription and information to the inversion by making additional assump-
is our most constrained solution based upon 7 (p) and tions about the earth. Adding the physical constraint on
A (p) observations. (We have plotted the PREM model the velocity gradient tightens the LP bounds considerably,
for reference; it lies within the bounds but, as Johnson bringing them inside the original corridor of Johnson and
and Lee demonstrated, does not satisfy the 7 (p) data.) Lee. Our results suggest that the P wave velocity can be
Although the correct bounds incorporating the second determined to an accuracy of better than ±t 0.25 km 5-'
derivative constraint are undoubtedly narrower, the almost everywhere in the outer core and ± 0. 1 km s'' in
geometrical consideration allows us to rule out some solu- a large part of the inner core. We can show by the same
tions without solving a nonlinear problem. The same type kind of geometrical argument used to apply the second
of argument applies to the first radial derivative constraint: derivative constraint that the inner core boundary must lie
it must be possible to join any point in the corridor to between 1207 and 1242 km if it is a simple discontinuity.
both ends of the envelope with a curve that is everywhere
nonincreasing with radius. Applying this principle to the APPENDIX A: PHYSICAL RESTRICTIONS ON THE
bounds based on only the flat earth constraint gives much VELOCITY IN THE OUTER CORE
wider bounds than does proper use of the radial con- It has been accepted that the bulk of the outer core is

straint.very nearly adiabatic and homogeneous since the work of
CONCLUSIONS Birch [1952]. Free oscillation data do not indicate any

significant departures from this state [Masters, 1979] and
We have presented a theory and an algorithm for so modern earth models tend to build in these properties.

finding the best possible envelope of velocities in a spheri- We can constrain. the first and second radial derivatives of
cal earth consistent with a finite number Of T (P) and, A(p) V, (r), the compressional velocity as a function of radius,
observations whose uncertainties are expressed as strict if we assume that the outer core is adiabatic and homo-
intervals. The solution begins by mapping the sphere into geneous and core material is "normal." (In this appendix
a half-space in which velocity varies only with depth, the only we adopt symbols common in geophysical thermo-
equivalent flat earth problem. This mapping has been dynamics: p is pressure, not ray parameter, V, will be
used before, but we show for the first time that maximiz- used for P wave velocity and T for absolute temperature;
ing or minimizing the depth functional in the flat earth we believe this is less confusing than using unfamiliar
always leads to a corresponding extremum in the spherical symbols for these variables.) By normal we mean that
system, even though a nonlinear transformation of sets (OKs/8p )s, the isentropic change in the bulk modulus
has taken place, with pressure, is about 3-4, and decreases slowly with

We use the linear programming approach of Garmany et isentropic compression. This assumption is supported by
al. [19791 to construct a corridor in the velocity-depth the finite-strain fits to the properties of the outer core
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done by Davies and Dziewonski [1975], who found that son [1967]. Like (aKs/ap)s.c, 8, is relatively insensitive
aKs/Op decreases from about 3.6 at the core-mantle to pressure and temperature. In a fluid, 8, can be written
boundary to about 3.45 at the inner core boundary.
Assuming hydrostatic equilibrium, fi a -' , I

s__ v - -s - i (Al) We conclude that 8, >1l as (a VP/OT),.C is negative in
OrVll 1S.C 2almost all materials. In fact, experiments usually show

where the subscripts SC denote constant entropy and that 8, - (OKs/Op)s,c so it is reasonable to suppose that
composition and g is the acceleration due to gravity. 1 < 8, < 4 in the outer core. Using (AI), (A5) can be
Since ex hypothesi (OKs/Op)s.c > 1, we find immediately written
that the first radial derivative of V, is negative. This dV, I+i
would be the first result we need if the core had an adia- dr - +aTyfX (A6)
batic temperature gradient and uniform composition, we dr OrJs.c
examine the effects of departures from these conditions where
shortly.

Differentiating (Al) gives .X-1

I I . I K I- s,c 1

O2 0 I Vd, 1 .iV, OrS.

s, Or s.C dr - I-o[.j
+ L 02 I i.e., both f and X probably lie between zero and one.

12 p (A2) Equation (A6) says that dVp/dr will be slightly more nega-
• Stive in a subadiabatic region. Reasonable estimates of

Gravitational acceleration g (r) is relatively insensitive to a,T, and y [e.g., Stacey, 19771 suggest that a Ty is about

details of the density distribution within the earth and is 0.05 in the outer core, so the velocity gradient would be
very well determined. The derivative dg/dr is almost cer- changed by about 5% in an isothermal region.
tainly positive in the outer core so the first term on the Differentiating (A6) with respect to radius yields
right side of (A2) is negative. The second term is much d2 V
smaller than the first because (OKs/Op)s,c is relatively - 1 JVp  I + aTyX - TyfX)
insensitive to p but is negative if the material is normal. dr+ Or s. 1  Or s..r y

Thus the second radial derivative of V, is also negative (A7)
given these assumptions.

How sensitive are these constraints to the assumption The first term on the right of (A/) is negative, but the
that the temperature gradient is adiabatic? It is extremely second term could cancel it, giving a nonnegative value of
unlikely that the outer core can be significantly superadia- d2 V/dr2 , we can show that this is unlikely.
batic as the resulting convective instability would relieve The only difficulty is the unknown radial variation of f.
the condition through convection [Masters, 1979] resulting The radial variation of aTyX is dominated by the
in an adiabatic interior with thin (seismically unobserv- behavior of a, a rapidly decreasing function of pressure.
able) boundary layers. To examine the effect of a subadi- Therefore d(a TyX)/dr is positive. Equation (A7) shows
abatic gradient, we write the temperature gradient in the that if f is constant or df/dr is positive (i.e., the core is
following form: increasingly stable at larger radius), the second radial

derivative of Vp remains negative. It may only become
dT _ IOTI (I-f) (A3) nonnegative if df/dr is large and negative: d2 Vp/dr 2 -0
dr Or s.C when

where f is a function of radius. In the isothermal case . r _ __ . | KJ
f-I and since we have ruled out super-adiabatic gra- dr aTyX g dr +212 -- j s.- I
dients, 0 < f < 1. The adiabatic temperature gradient is
given by -1o m

1

I Tr2Z. - (A4. )
Or s.J V1 Cp For this to occur the core must go from an adiabatic state

to an isothermal state in a radial distance of about 100 km.where s Gruneisen's ratio, a is the coefficient of ther- In summary, subadiabatic temperature gradients cause
ral expansion and C is the specific heat. With these the velocity gradient to steepen slightly (becoming more
relations and the assumption of homogeneity one may negative) and leave the second radial derivative of velocity

negative provided the core is uniformly stable or becomes
d. Vo +,y A) V more stable toward the core-mantle boundary. The

dr IOr JS, ~2 1 8 TIP." (AS) second radial derivative could become nonnegative if the
core becomes stable within a very small range of radius as

The temperature dependence of V,, is unknown but may one approaches the inner core boundary, but we consider
be estimated using the parameter 8, introduced by Ander- this case unlikely.
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What is the effect of variations in the composition? We vrlt/a vrlt.b/a rC+bl/

make the usual assumption that the outer core is predom- - f 8 dv + f 4 dv + f 8 dv
inantly molten iron with small amounts of light impurities. l Ila A

This model is based partly on shock wave experiments Using (BI) and the definition of v,
which indicate that the outer core is about 10% less dense
than pure iron [e.g., Jeanloz, 1979]. The same experi- V

ments show that the bulk sound speeds (which equal V A 8 dv + f dv + f 8 dv
in a fluid) of the outer core and of iron at core pressures
are virtually indistinguishable. It seems that the effect of The third term is second order in 8, and the second term
impurities is to lower Ks as much as they lower the den- may be approximated by -(v)A/a for 4 sufficiently
sity, resulting in little effect on the velocity. In this case, smooth and A/a sufficiently small. Note that for the
reasonable radial variations in the composition of the finite-dimensional realization of the problem that we
outer core would not affect the negativity of the first and solve, this requires that the perturbation be sufficiently
second radial derivatives of velocity. One can use the small not to cause the upper limit of integration to move
analysis of Jeanloz [19791 to estimate (6 VPIOC)TP, where into the support of a different basis function, or that the
c is the concentration of light impurities, and to make an coefficients of the two match to give a continuous transi-
analogous argument to the one for thermal variations tion. To first order,
given above. The results are similar, and we conclude that
the constraints on the radial derivatives are unlikely to be A C8 di - 4 W Ala
violated for reasonable chemical or thermal departures f
from the adiabatic and homogeneous state. If we solve for A and substitute the result into equation

APPENDix B: (1B1), we find that

EQUIVALENCE OF T o OPTIMIZATION PROBLEMS r 1 +8] - r 8 dv

It is not difficult to show that the extrema of z (v) occur a + (v)
for the same models dz/dv as the extrema of r (v). We do However,
this by showing that the variations of r (v) and z (v) differ
by a multiplicative constant, so that the perturbations to f
dz/dv one should make to improve the values of the Z, +81-Z, 10=Jf8 dv

penalty functionals have the same direction. Since the
linear programming solution for z (v) is optimal, that is so we may write
the functional derivative projected onto a given direction
either vanishes or leads outside the constraint set, r(v) r[4+81 - r] + W
can not be improved locally without leaving the region of a +((ZZ
dz/dv that fit the data. We write r as a functional of The negative sign is expected since maximizing the depth

=-dz/dv: minimizes the radius. This shows that any extremum of
r ae--Z,4" Z, over the set of satisfying the constraints is also an

extremum of r. We must still show that r does not
where achieve a "better" value for any other C satisfying the con-

straints.

Z, dv with I=vrIla The functional r 1 I is convex since it is the composition
of two convex mappings: a linear mapping (Z, [6) and an

Let A-= Z, [4+81- Z, [41. Then exponential. The set of models (v) that satisfy the data
and the radial derivative constraint, if it is used, is convex

rl, 1-r[ a (e , , - e /, I,,,) because it is described by linear inequalities. The familiar
theorem concerning the extrema of convex functionals

(-a) "  over convex sets applies: the value achieved at a local=a n! ((Z, [4 I+A) - Z, [41 p
-o n extremum of r [41 satisfying the data is the global extremal

value with respect to the set of feasible solutions. We are
... j (Z, [1 1' + nZ, [4 1" A Z, [4 ]) therefore justified in solving the problem by finding the

- . extrema of z(v) and mapping the resulting values into

(-a) .-I, values of r (v).
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Velocity Bounds from Statistical Estimates of r (p) and X (p)

PHILIP B. STARK AND ROBERT L. PARKER

Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego

We present a new technique for constructing the narrowest corridor containing all velocity
profiles consistent with a finite collection of r (p) data and their statistical uncertainties. Earlier
methods for constructing such bounds treat the confidence interval for each r datum as a strict
interval within which the true value might lie with equal probability, but this interpretation is
incompatible with the estimation procedure used on the original travel time observations. The new
approach, based upon quadratic programming (QP), shares the advantages of the linear program-
ming (LP) solution: it can invert r(p) and X(p) data concurrently; it permits the incorporation of
constraints on the radial derivative of velocity for spherical earth models; and theoretical results
about convergence and optimality can be obtained for the method. We compare P velocity bounds
for the core obtained by QP and LP. The models produced by LP predict data values at the ends
of the confidence intervals; these values are unlikely according to the proper statistical distribution
of errors. For this reason the LP velocity bounds can be wider than those given by QP, which
takes better account of the statistics. Sometimes, however, the LP bounds are more restrictive
because LP never permits the predictions of the models to lie outside the confidence intervals even
though occasional excursions are expected. The QP bounds grow narrower at lower levels of
confidence, but the corridors at 95% and 99.9% are virtually indistinguishable: The data must be
improved substantially to make a significant change in the velocity bounds.

INTRODULCTION variety of reasons: Travel times are biased bv near-source
and near-receiver anomalies and by large-scale hetero-Thts paper is a sequel to Stark et al. [1986], (heretnafter geneities within the earth; picking errors are likely to be

called SPMO); we assume the reader is familiar with their semtic an the assmpins o ra

notation and results. Both papers address the nonlinear systematic and at some point the assumptions of ray
invese robem f ry teoreic eisoloy o a ne-theory break down. All these factors tend to correlateinverse problem of ray theoretic seismology on a one- travel time measurement errors, some tend to bias the

dimensional earth. The earliest approach to the problem, measurement erore somtn oe bshe

thatof iecert nd ergotz n te 100s Akiandmeasurements, and without more information one shouldthat of Wtechert and Herglotz tn the 1900s [Aki and hesitate to assert that the errors are truly Gaussian. How-

Richards, 1980], assumes that an exact travel time curve is
ever, the approximation is increasingly reasonable whenavailable and that the earth does not contain strong low- there are many observations with wide geographic distribu-

velocity zones (regions where dv(r)idr > vt/r, where v is tion and it enables one to make progress on the problem.
seismic velocity as a function of r. radius). With these The nonlinear inversion scheme of Bessonoa et al.

assumptions, there is a unique velocity model correspond- 11976] and the linear programming (LP) method of Gar-

ing to the data. Once stronger low-velocity zones are per- many et al. [1979], discussed at length by SPMO take

mitted, many models may satisfy the data [for example, confidence intervals derived from the means and standard

see Gerver and Markushevich, 1966]. Even without strong deviations as strict limits within which 7 must lie. Dorman
low-velocity zones, usually infinitely many earth models and Jacobson [1981] objected that velocity bounds based
satisfy the available discrete imprecise travel time observa- on this reinterpretation of the statistical data will be
tions, which do not constitute exact travel time curves. erroneous. Some fraction of the time the confidence
The nonuniqueness introduced by the finite number of intervals will not include the r (p) values of the real earth;
data and their contamination by errors is traditionally the strict reinterpretation does not allow for this, and so
addressed by trying to delimit the range of models that fit the resulting envelope of models may be too narrow. On
the data adequately. the other hand, the models that determine points on the

For reasons stated by SPMO, it is convenient to work velocity-depth bounds tend to predict values of r (P) thatwith r(p), the verticallie at the ends of most of the confidence intervals. Since
parameter, rather than T(X), travel time as a function of the e s l a oprobit disriu intvals win

epicentral distance. Bessonova et al. [19761 introduced a there is really a probability distribution of values within
methd o esimatng ampe mens f Tand hei stnd-the confidence ir,!ervals and the values al the ends are less

method of estimating sample means of and their stand- likely to come from the earth, a model that predicts r (p)
ard deviations at discrete values of p. assuming that the values consistently at the ends is extremely unlikely to

noise contaminating the travel time observations is ran- repres ent at the envepemay wellkbe to

dom and uncorrelated and has zero mean. On these represent the earth and the envelope may well be too

assumptions the sample mean is approximately Student We shall show that it is not necessary to reinterpret the

distributed when p changes very little over the bands of statistical estimates as strict limits on T: We propose a
used in the estimation of. The assumption of independ- method, dubbed QP (for quadratic programming), that
ent zero-mean random noise is probably not valid for a finds velocity-depth bounds from estimates of the mean

values of r(p) and X(p) at various p and their standarddeviations. QP retains the advantages of LP: interpolation
Paper number 6B6146 of the data is not necessary, multivalued velocity models

0148-0227/87/006B-6146$05 00 are automatically excluded from the inversion, X(p) data
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can be used concurrently with r (p), and the radial deriva- degrees of freedom and that we have more than a few
tive of velocity can be constrained. We show below that data (n >> 1). Then the weighted misfit of the real
the proof of the equivalence of the spherical and flat earth earth's predictions to the sample means is approximately
inverse problems given by SPMO also applies to the X,2 distributed (chi-square with n degrees of freedom).
inverse problems from statistical data. With M2 equal to the 1-a percentage point of the X2 dis-

For convenience we shall work in the flat earth, follow- tribution, the requirement that /I C I< M2 limits our
ing SPMO as closely as possible in our notation. In the search to a set of models whose predictions include those
application to the earth's core using the r (p) data of John- of the real earth at the 1-a confidence level. We shall see
son and Lee [1985], we use the basis functions (pieces of later that the precise value of M 2 makes very little
1/v) and the radial derivative constraints proposed by difference in the bounds we find.
SPMO. The problem of finding velocity bounds is nonlinear for

a host of reasons: First, a nonlinear transformation from
THE QP METHOD the spherical to the flat earth has taken place: second, the

data mappings as usually written are nonlinear- third, theThe problems of calculating r(p) and X(p) are non- measure of misfit to the data is quadratic: and finally,
lirear with the customary representation of the earth by linear inequality constraints are required to ensure that the
v(e). velocity as a function of depth. However, Garmany models are physically reasonable and that the radial
et al. [1979] noted that r(p) and X(p) are linear function- derivative constraint is not violated. In general, problems
als of a one-dimensional flat earth model expressed as the of this kind are not soluble. Here, we show how a finite-
derivative of depth with respect to velocity, dz/dv, which dimensional approximation to the problem can be solved
we call = c(v): and give a numerically stable algorithm to solve it: P. B.

, Stark (Rigorous velocity bounds from soft T (p) and X (p)
r, [] -r (p,) = 2 (- p2) (v) dv data, submitted to Geophysical Journal of the Royal Astro-

nomical Society', 1986 (hereinafter referred to as Stark
,P (1986)) has demonstrated rigorously that the finite-

X,[ ] X(p,) 2 f p, (v 2
-p,)"-"'(v) d dimensional approximation converges to the optimal

result.

where w is the surface velocity. The depth to a fixed tar- Denote by U the set of flat earth models (v)0 that
get velocity v, is also a linear functional of the unknown satisfygd[1I All, the positivity constraint (0 >, 0 thatearth model 4: ensures that the models are physically realizable and, if we

choose to impose it, the radial derivative constraint

S(v) < a/v. We construct velocity bounds by finding the
Z, [41 (;) (v)dv maximum and minimum depths at which a target velocity

v, can occur among the models in U. We repeat the pro-
cedure with different target velocities until we have a good

Let y denote the reciprocal of the smallest p, in the data description of the envelope of acceptable models. This is
set. Then y is the largest velocity about which the data the same approach used by LP and described by SPMO.
give us any information, so we will take (v) to be defined The misfit functional A[!] is a positive semidefinite qua-
on the interval [w,y]. We must insist that 4(v) > 0 to dratic form and thus U [C] < M1 defines a convex set of
ensure corresponds to a single-valued velocity model models . (This does not mean that any particular model
v (z). We may exclude flat earth profiles that correspond 4W(v) is a convex function: the set of models satisfying the
to spherical earth profiles with low-velocity zones by constraint is a convex set in the space of models from
requiring (v) < al v, where a is the radius of the spheri- which 4 is drawn. See Luenberger [19691 about convex
cal earth. SPMO derive this expression for the constraint sets of functions.) The positivity constraint (v) > 0 and
and justify its use in inversions for core structure. the radial derivative constraint 4 (v) < a/v are both linear

Our data are sample means d, and their standard devia- inequality constraints- hence they too describe convex
tions o-, of r (p,) for i = I_. n, and of X(p,) for sets. U, the intersection of these three sets (the set of
i = n,- 1. n. The measure of misfit to the data we models that fit the data adequately, represent single-valued
shall use is velocity models and have a nonpositive radial derivative in

2 X,[4,]2 the spherical earth) is also a convex set. The depth to the
M ~t = T, 11 .4. target velocity v,, Z, [], is a linear functional of the

,- o, ,, ( -, model , linear functionals are convex. Our task is to find
the extrema of the convex functional Z, [(1 over the con-

We will say that a model (v) fits the data adequateiy if vex set of models U. The familiar tlheorem that local
u [C] < A 2, where M2 is some chosen tolerance. We can extrema achieve the global extremal values applies and we
estimate the probability that the actual r(p) and X(p) conclude that the minimum and maximum depths are
predictions of the real earth fit the sample means within unique.
AV. Let us assume following Bessonova et al. 119761 that We now know enough to establish the equivalence of
errors in the travel times are independent and normally the spherical and flat earth inverse problems using statisti-
distributed and have zero mean: then the sample means cal data. SPMO proved the equivalence for the strict data
are approximately Student t distributed. We will assume problem' their proof relies upon the first-order
further that the estimates of d, have a large number of equivalence of the functional derivatives of radius and
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TABLE 1. X(p) Data Used in Some of the Inversions, Abstracted linear functional), finding the best fitting model that
From the X(p) Observations of Johnson and Lee [19851 satisfies the positivity and radial derivative constraints and

p, s km-i X, km or,, km cr2, km that achieves a certain depth at v, is another quadratic pro-
gramming problem with linear inequality constraints.

0.02922 7273.4 380.216 268.8 The statistical data problem thus can be solved with a
0.03013 6985.0 380.216 219.5
0.03095 5953.9 380.216 143 7 single-parameter search: starting with z*, the depth to v,
0.03265 6661.8 380.216 2J9.5 achieved by the overall best fitting model, we add the con-
0.03347 6843.3 380.216 1,90. straint that the model attain a slightly larger depth and

See Figure 2. The values of ray parameter are given as the flat find the best fitting model; we continue increasing the
earth values reduced to the surface of the core (3480 kin). The depth until the best fitting model subject to the constraint
X(p) sample means, labeled X, are values reduced to the surface has a misfit larger than A 2. The depth at which M2 is first
of the core by subtracting the predictions of the PREM anisotropic exceeded is the maximum depth to v, in that discretiza-
earth model [Dziewonski and Anderson, 19811. The standard devia- tion. Similarly, by decreasing the depth until AV is
tions r are referred to in the text as the weaker X(p) constraints;l

-2 are the tighter X(p) data. The values of o-j correspond to the passed, we may find the least depth to v, in the discretiza-
confidence intervals for X(p) used by Stark et aL [1986]. tion. The monotonicity of the misfit with changes in the

depth constraint lets us stop the search as soon as M 2 is
depth with respect to 4 and upon the convexity of the set overrun: the misfit will not fall again.
of solutions that satisfy the strict data, the positivity con-
straint, and the radial derivative constraint. The depth APPLICATION TO TIF EARTI'S CORE
functional Z, [ ] and the radius functional are the same We implemented QP as described in Appendix B on the

for the statistical data problem as for the strict data prob- National Science Foundation San Diego Supercomputer
lem because we are using the same representation of the Center Cray X-MP/48. The computational requirements
earth, (v) = dz/dv. We have just seen that the set U of of the algorithm are fairly heavy: each set of bounds
models that satisfy the statistical data within A 2 and the presented required about 30 minutes of central processor
positivity and radial derivative constraint- is convex, so time. The inversions that follow use the means and
the proof given by SPMO applies to this problem as well. standard deviations of the 25 uninterpolated T (p) data

How may we find the minimum and maximum depths tabulated by Johnson and Lee [1985]. All our inversions
to v;? A slightly different perspective makes the job fairly employ the radial derivative constraints and 1/v basis
straightforward, although it is rather expensive computa- functions advocated by SPMO. SPMO used an extra pair
tionally. We shall look at the models that fit the data best of basis functions bracketing the target velocity to enhance
subject to the additional linear constraint that they reach a the numerical efficiency of LP (Stark (1986) provides a
certain depth at the target velocity v,: The penalty func- theoretical explanation of this effect); we have followed
tional will be the misfit to the data, not the depth to the their practise. We used 100 basis functions in the prelim-
target velocity. All the constraints are then linear and the inary expansion and started the inversions at a radius of
only nonlinearity is in the new penalty functional, which is 3480 km with a minimum surface velocity w = 7 km s- 1,

quadratic in the unknown model . as they did. The smallest number of degrees of freedom
Consider the earth model *(v), where in the r(p) estimates is 115, and many estimates were

0 < (v) <<, a/v, that has the smallest A1, the derived from thousands of observations, so approximating
weighted misfit to the data means d,. If we approximate the distributions of the sample means by Gaussians is rea-
the problem in finite dimensions by writing 4 as a linear sonable. The approximation is improved further by the
combination of a finite set of basis functions, then an summation over the 25 data. The five X(p) means and
approximation to ° can be found by quadratic program- uncertainties that we use to refine the structure near the
ming with linear inequality constraints. Stark (1986) inner core boundary in some of the inversions that follow
proves that for any reasonable choice of basis functions, are tabulated in Table 1. We somewhat arbitrarily ascribed
the results obtained by increasing the number of basis two sets of uncertainties to the X(p) observations of John-
functions used in the finite-dimensional approximation son and Lee [1985] because the data, from an array study
converge to the correct answer for the infinite-dimensional in central Arizona, are relatively few in number and may
problem. The inverse problem is consistent using that set not be very representative of the spherically averaged
of basis functions provided p[(*] M'P. The best fitting earth.
finite-dimensional model * associates the depth When we refer to statistical bounds at the 99.9% or 95%
: = Z, [ ] with the target velocity v,. Provided the prob- confidence level, we mean that we have set M2 equal to
lem is consistent, z* is an upper bound on the least depth the appropriate percentage point of the X.1 distribution.
to v, and a lower bound on the greatest depth to v,. Equating n with the number of data is appropriate because

We prove in Appendix A that if we add the linear con- we are not estimating a model, nor indeed reducing the
slraint that the model reach a greater depth than z* at v,, number of degrees of freedom at all; we are estimating a
the best fitting model that we can then find will have a bound on a property of the set of models satisfying the
larger misfit A[4]. If we make the model attain a still data and additional constraints. We used values of X,
greater depth, the misfit will continue to grow. The same from Abramowitz and Stegun [19651; they range from about
thing happens if we require the model to have smaller and 37 to about 60 for 25 and 30 degrees of freedom. A
smaller depths than z*. Since the constraint that the glance at Figure 1, a representative plot of the minimum
model arrive at a certain depth at v, is linear (Z,,[C] is a misfit to the data as a function of the depth that the model
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160 straints. The solid lines are QP bounds at the 99.9%
confidence level (M2 = 52.6) and, as we might have

140 predicted from the steep misfit functional, they are indis-

120 tinguishable from the QP bounds at the 95% confidence
level (M2 = 37.7) in a diagram of this small size. The

100 similarity of these bounds supports our use of the approxi-

80 - mation that the individual data errors sum to a X,2 disti-
bution since the results are not sensitive to the precise

60 tolerance M 2 we choose. In places the QP bounds lie out-

40 side the LP bounds because QP allows the misfit to occur

20 -in the most advantageous place while LP limits the misfit
20 at each p independently. In other places the LP bounds

0I I I 1 1 1. are outside; this is because the models produced by LP

2040 2100 2160 tend to have data predictions along the ends of the
Constrained depth (ki) confidence intervals. QP will not permit this since such

predictions are jointly extremely improbable. As an
interesting note, geometrical constructions of the kind

Fig. I. Representative plot of NZ versus depth the model is con- intersed wth teostric bonscan otbe aied
strained to achieve, from the inversion of the 25 r(p ) data with SPMO used with the strict LP bounds can not be applied
target velocity vt= 18 km -t. The minimum misfit of 0.8611 to the statistical bounds: there is no reason to expect the
occurs at 2049 km. bounds themselves to meet the same physical constraints

as the models in the statistical problem. In the strict prob-
is made to attain, shows that the misfit passes rapidly lem one knows that bounds using the radial derivative
through that span with only a slight change in depth so we constraint themselves satisfy the radial derivative con-
do not expect the bounds at those confidence levels to be straint, here that is clearly false. The slight narrowing
very different. As we proved, the smallest misfit is mono- within the inner core where the bounds violate the radial
!onic in the depth that the model is constrained to reach. derivative constraint is due to the presence of a datum
The best fitting model *() has a misfit of about 0.86 and with particularly small standard deviation.
reaches a depth of 2049 km at the flat earth velocity 18 We have used the five looser X(p) data of Table I to
km s7-t; it is, however, built unattractively from steps in try to reduce the width of the envelope near the inner core
the spherical earth velocity. It is usually true that models boundary. Figure 3 compares the results at the 99.9/,
with the smallest misfit to the data are disenchantingly confidence level (M2 = 59.7, solid line) with the LP solu-
rough. A common alternative to finding bounds on the tion (dashes) using the strict bounds on X(p) given by
set of models that satisfy the data, as we do here, is to SPMO. The QP results using the five weaker X(p) con-
seek the smoothest model that fits the observations ade- straints are essentially identical to the results in Figure 2
quately (see Constable et al. [1987], for example). Either using only the 25 r(p) data. The five weaker X(p) con-
approach discourages us from attaching too much straints make a significant difference to the strict LP
significance to accidental properties of a particular model. bounds near the inner core, but they are too loose to

Figure 2 compares QP and LP bounds based on the 25 affect the QP results. We assigned more optimistic esti-
data for r (p) alone. The dotted bounds are those mates of the standard deviations of the X(p) observations
obtained by SPMO using LP with radial derivative con- (Table 1) to improve the bounds and inverted again. Fig-
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0 t t t

8.0 9.0 100 11.0 12.0
Velocity (kr s- )

Fig. 2. Bounds based on the 25 T(p) data. The solid lines are the statistical bounds at the 95%/
confidence level; the bounds at the 99.9% confidence level are indistinguishable at this scale. The
dotted lines are the strict bounds obtained by SPMO from the 99.9% confidence intervals of John-
son and Lee 11985]. The two statistical bounds are so similar because X2 changes so abruptly with
depth (Figure I). Also note that while the models are constrained to be monotonic, the statistical
bounds need not be monotonic although the strict bounds must.
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Fig. 3. Statistical bounds at the 99.9 / confidence level using the 25 r (p) data alone and using in
addition the five loose XNip) estimates from SPMO using Johnson and Lee's 119851 data. On this
scale the results are not distinguishable: both are represented by the solid lines The dashed
bounds are the strict bounds from SPMO using both the -(p) and X (p) data. The errors assigned
to the estimates of XNp) are too large to change the statistical bounds, although they hae a
significant effect on the strict bounds near the inner core boundary

ure 4 plots the results at the 95% confidence level PREM model of Dziewonski and Anderson 11981].
(M 2 = 43.8, dashes). The solid lines represent both the Although PREM lies inside the corridor, its weighted
results from the 25 r-(p) data alone and using the weak misfit to the sample means of the 25 -(,' ) data is
X(p) constraints. The tighter X(p) data narrow the immense. This demonstrates that an arbitrary model
bounds particularly near the inner core boundary but also within the corridor will not necessarily fit the data. Every
generally throughout the core. We tried to invert the velocity-depth point on or within the bounds is consistent
corresponding strict data bounds with LP, but the revised with the data: each is contained in some model that fits
data were inconsistent even using 200 basis functions: the data. However, many models in the corridor are
doubtless this is why they have a strong effect on the QP invalid. Within the finite-dimensional approximation, the
inversion. (This illustrates, however, that QP is less sen- data rule out every point outside the corridor as the
sitive than LP to the estimation of data errors.) The approximation improves, the bounds move slightly out-
smallci P(p) error estimates are probably too optimistic ward. We tried unsuccessfully to bring the predictions of
especially with reference to spherically averaged earth PREM into agreement with a X' measure of misfit to the
structure: we therefore prefer the velocity bounds based data at the 99.9% level with a baseline shift: there is still
on the 25 r (p) and five weaker P~p) data (solid lines). some inconsistency between short- and long-period

The dotted line in the middle of the bounds is the seismic data.
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Fig 4. Statistical bounds at the 95% confidence level. The solid lines are the pair of bounds found
using the r(p) data alone and using the five weaker X(p) constraints, as in Figure 2. The dashed
bounds use instead the five tighter X(p) estimates in Table 1. Note the profound effect near the
inner core boundary and the slight general narrowing. In contrast, changes to the X(p) data affect
the strict bounds only near the inner core boundary. The PREM earth model (Dziewonski and
Anderson. 1981) appears as the dotted line for reference. PREM does not satisfy the r (p) data,
even at the 99.9% confidence level
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DIscuSSION do. In particular, "' = a42 + (l-a )" E S:I for a =

(zz)/(z2-z*) E 10, 1) because then :1 - a:2 +
The QP method allows statistical estimates Of (p) to be (l-a)z* and Z,,[4] is linear in 4. The misfit functional

used in a manner that is more consistent with their deriva-
tion than the previous methods of Bessonova ei aL 11976] [E] is convex, so by definition

and Garmanv et al. [1979]. On the basis of 25 core r(p) [L] 2 4- (l-a) *1
data from Johnson and Lee [19851, QP inversions at the
99.9 and 95% confidence levels find a corridor of velocity < aM[ 21 -4- (I-a)i [ i
models about 0.25 km s7- wide and limit the location of < aA[.U] - (l-a).[1*]
the inner core boundary to approximately 1227-1290 km.
The velocity jump at the inner core boundary is about < aLI'] -4 (l-a)A[ 1] = A
0.4-0.8 km s- '. QP is less sensitive than LP to the esti- 41 was defined to be the model in S:I that minimized
mation of data errors. In places the QP bounds are wider so we have reached a contradiction. Figure I is a
than the corresponding linear programming bounds, in sorwenhave reached a conction f
places they are tighter. Overall there is not much representative plotofM as afunctionof:.
difference. This does not indicate that LP and QP will
always give comparable results: The nonlinearity of the
problem prevents one from predicting what would happen Our FORTRAN implementation of QP is based on the
with different data. algorithm NNLS [Lawson and Hanson, 19741. Nonnega-

While QP brings us closer than any previous method to tive least squares (NNLS) solves the problem
a completely consistent use of the scattered travel time
observations that are available, several steps remain. The min 1.4 -x - bil
sample means of T(p) are found by averaging over small
bands of X [Bessonova et al., 1976]L through the unknown where x E IR", b E R" and A is a matrix of m rows and f

X(p) function this corresponds to a weighted average in columns. NNLS is a tremendously robust program even
p. The averaging should be incorporated into the inver- when a large number of variables are used, so much so
sion process: We ought to require that models predict that SPMO used a weighting scheme similar to the one we
acceptable average values of r (p) over appropriate bands will describe to code LP by simulating linear programming

of p. The present method of estimating r(p) will not with NNLS.
allow this: it seems likely that another method could be To find the finite-dimensional approximation :o the best
devised whose averaging in p is more easily quantified, fitting model *, we pass NNLS the following matrix .4
The current estimation procedure also requires that the
errors in the travel time observations have zero mean and I /
be independent and normally distributed. It might be pos-
sible with a great deal more data to estimate the true error Y W-x 0
distribution of our measurements, but this probably could
not be done independently of a reference model, which and the vectorb:
begs the question.

APPENDIX A: QUASI-CoNvFXITN 01 -

Here we prove that as the depth to v, is constrained to
be further and further from -*, the depth achieved by the
model * that minimizes the misfit u[4], the misfit / is the L by L identity matrix. where L is the number of
increases monotonically. This is equivalent to showing basis functions. The second / matrix is used to introduce
that the function of z defined by finding the minimum of a set of L positive slack variables that impose upper
A.[ ] among the models satisfying the positivity and bounds on the coefficients in the basis expansion (see
radial derivative constraints and the constraint that Bazaraa and Shctv [19791, for a discussion of slack \ari-
Z, [] = z, is a quasi-convex functional of: (see Ba:araa ables). The diagonal matrix of weights, If,. account', for

and Shetry [19791, about quasi-convexity). Let P denote the different standard deviations of the data:
the convex set of models that satisfy the positivity and W.. = I ll,, i =.1 0 otherwise 1. The matrices - and X

radial derivative constraints. Define S: to be the subset of map the coefficients of the basis expansion for Z into their

models in P that reach the depth - at velocity ,. that is '(p) and X(p) predictions (for the exact expressions

the elements of P that satisfy the additional constraint using the 1/v basis functions. see the definitions of' and

that Z,,[4] = . S is obviously convex. By definition X,. in the fourth section of SPMO). We bound the
coefficients of the model to enforce the radial derivative

" E S . Let 41 be a model that minimizes the convex inequality constraint with the vector c = (a, a._. )I E
functional .[41 over the convex set S: . We will derie a, R where a is the radius of the bod' of interest (here
contradiction from the assumption that there is a model 3480 km, the core radius). The small positive constant y

2 E S2 such that Atj-] < uI 1. where :1 is between : down\,eights fitting the data versus satisfying the radial
and z,, i.e., :* < :1 : or : > : : All convex derivative constraints. (The radial derivative inequalities
linear combinations of * and ( satisfy the convex posi- are then satisfied almost exactly.) The sample means of
tivity and radial derivative constraints since ° and ( both the data comprise the vector d The first 1, elements of
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the unknown vector x are the coefficients of the basis Rtt IRI N IS
expansion we want; the latter L are slack variables men- Abramowitz, M., and I. A. Stegun. Handbook o/ .Mathemaiiial
tioned above, which are needed to imp- the radial Functions. Dover, New York. 1965
derivative inequality constraints. NNLS automatically Aki, K. and P. G. Richards, Quantitative Sesmologi,: Theon and
forces the unknown to be nonnegative. This in turn Methods, W. I. Freeman, San Francisco. Calif, 1980es t(v) > 0 through our choice of basis func- Bazaraa. M. S., and C. M. Shetty, Nonlinear Programming. Johnensures that )Wiley, New York, 1979.
tions. In general, the radial derivative constraints will be Bessonova, E. N., V M. Fishmar. M. G. Shnirman, G A Sitni-
violated slightly since NNLS minimizes the two norm of kova, and L R Johnson, The tau method for inerson of
the misfit to b; however, with y = IO ' they were never travel times. II, Earthquake data, Geophys. J. R. Awron. Sot,
violated by more than a part in 10l in our applications. 46. 87- 108, 1976.

Constable, S. C, R, L. Parker, and C..G Constable. (kcam'sOnce we have found the best fitting model, we may con- Inverston: A practical algorithm for generating smooth models
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